Standards for Mathematical Practice - all math practice standards covered in ALL math courses at HPHS.		
MP1	Make sense of problems and persevere in solving them.	
MP2	Reason abstractly and quantitatively.	
MP3	Construct viable arguments and critique the reasoning of others.	
MP4	Model with mathematics.	
MP5	Use appropriate tools strategically.	
MP6	Attend to precision.	
MP7	Look for and make use of structure.	
MP8	Look for and express regularity in repeated reasoning.	
Mathematical Practices		Engagement Indicators in Students*
Overarching habits of mind of a productive thinker	MP1: Make sense of problems and persevere in solving them.	Understand the meaning of the problem and look for entry points to its solution
		Analyze information (givens, constrains, relationships, goals)
		Make conjectures and plan a solution pathway
		Monitor and evaluate the progress and change course as necessary
		Check answers to problems and ask, "Does this make sense?"
	MP6: Attend to precision.	Communicate precisely using clear definitions
		State the meaning of symbols, carefully specifying units of measure, and providing accurate labels
		Calculate accurately and efficiently, expressing numerical answers with a degree of precision
		Provide carefully formulated explanations
		Label accurately when measuring and graphing
Reasoning and Explaining	MP2: Reason abstractly and quantitatively.	Make sense of quantities and relationships in problem situations
		Represent abstract situations symbolically and understand the meaning of quantities
		Create a coherent representation of the problem at hand
		Consider the units involved
		Flexibly use properties of operations
	MP3: Construct viable arguments and critique the reasoning of others.	Use definitions and previously established causes/effects (results) in constructing arguments
		Make conjectures and use counterexamples to build a logical progression of statements to explore and support ideas
		Communicate and defend mathematical reasoning using objects, drawings, diagrams, and/or actions
		Listen to or read the arguments of others
		Decide if the arguments of others make sense and ask probing questions to clarify or improve the arguments
	MP4: Model with mathematics.	Apply prior knowledge to solve real world problems

HPHS ALGEBRA I

Subject	Grade	Domain	Cluster Statement	Standard Code	Common Core Standard
Mathematics	HS	Quantities*	Reason quantitatively and use units to solve problems.	N.Q. 1 (PR)	Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.
Mathematics	HS	Quantities*	Reason quantitatively and use units to solve problems.	N.Q. 2 (PR)	Define appropriate quantities for the purpose of descriptive modeling.
Mathematics	HS	Quantities*	Reason quantitatively and use units to solve problems.	N.Q. 3 (PR)	Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
Mathematics	HS	Seeing Structure in Expressions	Interpret the structure of expressions.	A.SSE. 1 (PR)	Interpret expressions that represent a quantity in terms of its context. $\begin{aligned} & \text { ¢ }\end{aligned}$
Mathematics	HS	Seeing Structure in Expressions	Interpret the structure of expressions.	A.SSE. 1 a. (PR)	Interpret parts of an expression, such as terms, factors, and coefficients.
Mathematics	HS	Seeing Structure in Expressions	Interpret the structure of expressions.	A.SSE. 1 b. (PR)	Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $\mathrm{P}(1+\mathrm{r}) \mathrm{n}$ as the product of P and a factor not depending on P.
Mathematics	HS	Seeing Structure in Expressions	Interpret the structure of expressions.	A.SSE. 2 (PR)	Use the structure of an expression to identify ways to rewrite it. For example, see $\mathrm{x} 4-\mathrm{y} 4$ as $(\mathrm{x} 2) 2-(\mathrm{y} 2) 2$, thus recognizing it as a difference of squares that can be factored as ($\mathrm{x} 2-\mathrm{y} 2$) ($\mathrm{x} 2+\mathrm{y} 2$).
Mathematics	HS	Seeing Structure in Expressions	Write expressions in equivalent forms to solve problems.	A.SSE. 3 (PR)	Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.
Mathematics	HS	Seeing Structure in Expressions	Write expressions in equivalent forms to solve problems.	A.SSE. 3 a. (PR)	Factor a quadratic expression to reveal the zeros of the function it defines.
Mathematics	HS	Arithmetic with Polynomials and Rational Expressions	Perform arithmetic operations on polynomials.	A.APR. 1 (PR)	Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Mathematics	HS	Arithmetic with Polynomials and Rational Expressions	Understand the relationship between zeros and factors of polynomials.	A.APR. 3 (PR)	Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.
Mathematics	HS	Creating Equations*	Create equations that describe numbers or relationships	A.CED. 1 (PR)	Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
Mathematics	HS	Creating Equations*	Create equations that describe numbers or relationships	A.CED. 2 (PR)	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
Mathematics	HS	Creating Equations*	Create equations that describe numbers or relationships	A.CED. 3 (PR)	Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.
Mathematics	HS	Creating Equations*	Create equations that describe numbers or relationships	A.CED. 4	Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $\mathrm{V}=\mathbb{I}$ to highlight resistance R.
Mathematics	HS	Reasoning with Equations and Inequalities	Understand solving equations as a process of reasoning and explain the reasoning.	A.REI. 1 (PR)	Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
Mathematics	HS	Reasoning with Equations and Inequalities	Solve equations and inequalities in one variable.	A.REI. 3 (PR)	Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
Mathematics	HS	Reasoning with Equations and Inequalities	Solve equations and inequalities in one variable.	A.REI. 4 (PR)	Solve quadratic equations in one variable.
Mathematics	HS	Reasoning with Equations and Inequalities	Solve systems of equations.	A.REI. 6 (PR)	Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.
Mathematics	HS	Reasoning with Equations and Inequalities	Represent and solve equations and inequalities graphically.	A.REI. 10 (PR)	Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).
Mathematics	HS	Reasoning with Equations and Inequalities	Represent and solve equations and inequalities graphically.	A.REI. 11 (PR)	Explain why the x-coordinates of the points where the graphs of the equations $y=$ $f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $\mathrm{f}(\mathrm{x})$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.
Mathematics	HS	Reasoning with Equations and Inequalities	Represent and solve equations and inequalities graphically.	A.REI. 12 (PR)	Graph the solutions to a linear inequality in two variables as a half plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.
Mathematics	HS	Interpreting Functions	Understand the concept of a function and use function notation.	F.IF. 1 (PR)	Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.

HPHS ALGEBRA
Subject Grade

Mathematics HS

Mathematics HS

Domain
interpreting Functions

Mathematics HS

Mathematics HS

Mathematics	HS
Mathematics	HS

Mathematics HS

Interpreting Functions

Interpreting Functions

Building Functions

HS
Building Functions
Mathematics HS
Linear and Exponential Model
Mathematics HS
Mathematics H
inear and Exponential Models

Linear and Exponential Models*
Linear and Exponential Models*
Mathematics HS
Mathematics HS

Mathematics HS
Interpreting Categorical and Quantitative Data

Mathematics HS
Mathematics HS

Cluster Statement

Understand the concept of a function and use function notation.

Interpret functions that arise in applications in terms of the context.

Interpret functions that arise in applications in terms of the context.

Interpret functions that arise in applications in terms of the ontext.
Analyze functions using different representations.
Analyze functions using different representations.

Analyze functions using different representations.

Analyze functions using different representations.

Analyze functions using different representations.
Build a function that models a relationship between two quantities.

Build a function that models a relationship between two quantities.

Build new functions from existing functions.
Construct and compare linear and exponential models and solve problems.
Construct and compare linear and exponential models and solve
problems.
Construct and compare linear and exponential models and solve
problems.
Construct and compare linear and exponential models and solve problems.

Construct and compare linear and exponential models and solve problems.
nterpret expressions for functions in terms of the situation they model.
mmarize represent, and interpret data on a single count or measurement variable.

Summarize, represent, and interpret data on a single count or measurement variable.
Summarize, represent, and interpret data on a single count or measurement variable.
Summarize, represent, and interpret data on two categorical and quantitative variables.

Standard Code Common Core Standard

Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. \star
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. \star Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. \star
Graph linear and quadratic functions and show intercepts, maxima, and minima. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
Use the process of factoring and completing the square in a quadratic function it show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y=(1.02) t, y=$ (0.97)t, $\mathrm{y}=(1.01) 12 \mathrm{t}, \mathrm{y}=(1.2) \mathrm{t} 10$, and classify them as representing exponential growth or decay.
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

Write a function that describes a relationship between two quantities. \star Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constan
function to a decaying exponential, and relate these functions to the model

Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and nex graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.
Recognize situations in which one quantity changes at a constant rate per unit interval relative to another
Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.
Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs
(include reading these from a table) (include reading these from a table).
Observe using graphs and tables that a quantity increasing exponentially
eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

Interpret the parameters in a linear or exponential function in terms of a context. Represent data with plots on the real number line (dot plots, histograms, and box plots).
Use statistics appropriate to the shape of the data distribution to compare center (median mean) and spread (interquartil range, standard deviation) of two accounting for possible effects of extreme data points (outliers).
Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.

HPHS ALGEBRA I

Subject Grade

Mathematics HS
Mathematics HS
Mathematics HS

Cluster Statement

Standard Code Common Core Standard

 Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by theSummarize, represent, and interpret data on two categorical and
uantitative variables.
. Interpret linear models.
interpreting Categorical and Quantitative Data Interpret linear models.
S.ID. 6 a. (PR)
S.ID. 7 (PR) S.ID. 9 (PR) hasize linear and exponential models.

Distinguish between correlation and causation.

HPHS GEOMETRY

Subject
Mathematics
Mathematics
Mathematics

Congruence

Congruence
Mathematics
Congruence

Congruence

Congruence

Congruence

Congruence
Similarity, Right Triangles, and
Mathematics
Similarity Right Triangles, and rigonometry
Similarity, Right Triangles, and
Mathematics HS Trigonometry
Mathematics

Similarity, Right Triangles, and Trigonometry Similarity, Right Triangles, and
Trigonometry
Similarity, Right Triangles, and Trigonometry HS Similarity, Right Triangles, and Trigonometry
Similarity, Right Triangles, and
Mathematics HS

Mathematics HS

Mathematics HS

Mathematics HS

Mathematics HS

Cluster Statemen

Reason quantitatively and use units to solve problems.

Experiment with transformations in the plane.

Experiment with transformations in the plane.

Experiment with transformations in the plane.

Understand congruence in terms of rigid motions
Understand congruence in terms of rigid motions.
Understand congruence in terms of rigid motions

Prove geometric theorems

Prove geometric theorems

Prove geometric theorems
Understand similarity in terms of similarity transformations
Understand similarity in terms of similarity transformations.

Understand similarity in terms of similarity ransformations

Understand similarity in terms of similarity transformations.
Understand similarity in terms of similarity transformations.

Prove theorems involving similarity.
Prove theorems involving similarity.
Define trigonometric ratios and solve problems involving right triangles.
Define trigonometric ratios and solve problems involving right triangles.
Define trigonometric ratios and solve problems involving right triangles.

Apply trigonometry to general triangles
Apply trigonometry to general triangles.

tandard Code Common Core Standard

Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.
Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
Represent transformations in the plane using, e.g., transparencies and geometry software; describe Represermations as functions that take points in the plane as inputs and give other points as describe Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).
Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent. Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent, points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of
G.CO. 10 (PR) a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.

Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangle are parallelograms with congruent diagonals.

Verify experimentally the properties of dilations given by a center and a scale factor: A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a G.SRT. 1 a. line passing through the center unchanged.
G.SRT. 1 b . The dilation of a line segment is longer or shorter in the ratio given by the scale factor Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of
G.SRT. 2 (PR)

Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.
Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity. Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, eading to definitions of trigonometric ratios for acute angles
G.SRT. 7 Explain and use the relationship between the sine and cosine of complementary angles
G.SRT. 8 (PR) Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems."
G.SRT. 10
${ }^{+}$) Prove the Laws of Sines and Cosines and use them to solve problems. G.SRT. 11
+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).

HPHS GEOMETRY					
Subject	Grade	Domain	Cluster Statement	Standard Code	Common Core Standard
Mathematics	HS	Circles	Understand and apply theorems about circles.	G.C. 2 (PR)	Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.
Mathematics	HS	Circles	Find arc lengths and areas of sectors of circles.	G.C. 5	Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.
Mathematics	HS	Expressing Geometric Properties with Equations	Translate between the geometric description and the equation for a conic section.	G.GPE. 1 (PR)	Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.
Mathematics	HS	Expressing Geometric Properties with Equations	Use coordinates to prove simple geometric theorems algebraically.	G.GPE. 4	Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point ($1, \mathrm{O} 3$) lies on the circle centered at the origin and containing the point $(0,2)$.
Mathematics	HS	Expressing Geometric Properties with Equations	Use coordinates to prove simple geometric theorems algebraically.	G.GPE. 5	Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
Mathematics	HS	Expressing Geometric Properties with Equations	Use coordinates to prove simple geometric theorems algebraically.	G.GPE. 7	Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.
Mathematics	HS	Geometric Measurement and Dimension	Explain volume formulas and use them to solve problems.	G.GMD. 3	Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems. \star
Mathematics	HS	Modeling with Geometry	Apply geometric concepts in modeling situations.	G.MG. 1	Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).
Mathematics	HS	Modeling with Geometry	Apply geometric concepts in modeling situations.	G.MG. 3	Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).

Subject	Grade	Domain	Cluster Statement
Mathematics	HS	Congruence	Experiment with transformations in the plane.
Mathematics	HS	Congruence	Experiment with transformations in the plane.
Mathematics	HS	Congruence	Experiment with transformations in the plane.
Mathematics	HS	Congruence	Understand congruence in terms of rigid motions.
Mathematics	HS	Congruence	Understand congruence in terms of rigid motions.
Mathematics	HS	Congruence	Understand congruence in terms of rigid motions.
Mathematics	HS	Congruence	Prove geometric theorems.
Mathematics	HS	Congruence	Prove geometric theorems.
Mathematics	HS	Congruence	Prove geometric theorems.
Mathematics	HS	Similarity, Right Triangles, and Trigonometry	Understand similarity in terms of similarity transformations.
Mathematics	HS	Similarity, Right Triangles, and Trigonometry	Understand similarity in terms of similarity transformations.
Mathematics	HS	Similarity, Right Triangles, and Trigonometry	Prove theorems involving similarity.
Mathematics	HS	Similarity, Right Triangles, and Trigonometry	Prove theorems involving similarity.
Mathematics	HS	Similarity, Right Triangles, and Trigonometry	Define trigonometric ratios and solve problems involving right triangles.
Mathematics	HS	Similarity, Right Triangles, and Trigonometry	Define trigonometric ratios and solve problems involving right triangles.
Mathematics	HS	Similarity, Right Triangles, and Trigonometry	Define trigonometric ratios and solve problems involving right triangles.
Mathematics	HS	Similarity, Right Triangles, and Trigonometry	Apply trigonometry to general triangles.
Mathematics	HS	Similarity, Right Triangles, and Trigonometry	Apply trigonometry to general triangles.
Mathematics	HS	Circles	Understand and apply theorems about circles.
Mathematics	HS	Circles	Understand and apply theorems about circles.

Standard Code Common Core Standard

Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
Represent transformations in the plane using, e.g., transparencies and geometry software escribe transformations as functions that take points in the plane as inputs and give othe points as outputs. Compare transformations that preserve distance and angle to those that o not (e.g., translation versus horizontal stretch).
Given a geometric figure and a rotation, reflection, or translation, draw the transformed igure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of ransformations that will carry a given figure onto another
Use geometric descriptions of rigid motions to transform figures and to predict the effect of given rigid motion on a given figure; given two figures, use the definition of congruence in congruent.
Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.
Prove theorems about triangles. Theorems include: measures of interior angles of a Piangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
Prove theorems about parallelograms. Theorems include: opposite sides are congruent pposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.

Given two figures, use the definition of similarity in terms of similarity transformations to ecide if they are similar; explain using similarity transformations the meaning of similarity or triangles as the equality of all corresponding pairs of angles and the proportionality of all orresponding pairs of sides.
Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.
Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.
Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
Understand that by similarity, side ratios in right triangles are properties of the angles in the G.SRT. 6 (PR) $\quad \begin{aligned} & \text { Understand that by similarity, side ratios in right triangles are propertie } \\ & \text { triangle, leading to definitions of trigonometric ratios for acute angles. }\end{aligned}$
G.SRT. 7 Explain and use the relationship between the sine and cosine of complementary angles Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.«

+) Prove the Laws of Sines and Cosines and use them to solve problems.
(+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces) Prove that all circles are similar.
dentify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.

HPHS GEOMETRY HONORS

Subject	Grade	Domain	Cluster Statement	Standard Code	Common Core Standard
Mathematics	HS	Circles	Find arc lengths and areas of sectors of circles.	G.C. 5	Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.
Mathematics	HS	Expressing Geometric Properties with Equations	Translate between the geometric description and the equation for a conic section.	G.GPE. 1 (PR)	Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.
Mathematics	HS	Expressing Geometric Properties with Equations	Use coordinates to prove simple geometric theorems algebraically.	G.GPE. 4	Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point $(1, O ̈ 3)$ lies on the circle centered at the origin and containing the point (0,2).
Mathematics	HS	Expressing Geometric Properties with Equations	Use coordinates to prove simple geometric theorems algebraically.	G.GPE. 5	Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
Mathematics	HS	Expressing Geometric Properties with Equations	Use coordinates to prove simple geometric theorems algebraically.	G.GPE. 7	Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula
Mathematics	HS	Geometric Measurement and Dimension	Explain volume formulas and use them to solve problems.	G.GMD. 3	Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems. \star
Mathematics	HS	Modeling with Geometry	Apply geometric concepts in modeling situations.	G.MG. 1	Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).
Mathematics	HS	Modeling with Geometry	Apply geometric concepts in modeling situations.	G.MG. 3	Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios)

HPHS ALGEBRA 2

Subject Grade

Mathematics HS
Mathematics HS

Mathematics	HS	The Complex Number System

Mathematics	HS	The Complex Number System

Mathematics HS Seeing Structure in Expressions
Mathematics HS Seeing Structure in Expressions

Mathematics HS
Mathematics HS

Mathematics HS

Mathematics HS

Mathematics HS

Mathematics HS

Mathematics HS

Mathematics HS

Mathematics HS

Mathematics HS

Mathematics HS

Mathematics HS

Mathematics HS HS

Domain

The Real Number System
The Complex Number System

Complex Number System

Seeing Structure in Expressions
Seeing Structure in Expressions

Seeing Structure in Expressions
Seeing Structure in Expressions

Seeing Structure in Expressions

Seeing Structure in Expressions
Arithmetic with Polynomials and Rational Expressions

Arithmetic with Polynomials and Rational Expressions
Arithmetic with Polynomials and
Rational Expressions Rational Expressions

Creating Equations*
Creating Equations*

Creating Equations*

Reasoning with Equations and nequalities
Reasoning with Equations and Inequalities
Reasoning with Equations and nequalities

Cluster Statement
Extend the properties of exponents to rational exponents.

Perform arithmetic operations with complex numbers.
Perform arithmetic operations with complex numbers.
Use complex numbers in polynomial identities and equations.
Interpret the structure of expressions.

Interpret the structure of expressions

Interpret the structure of expressions
Write expressions in equivalent forms to solve problems.
Write expressions in equivalent forms to solve problems.

Write expressions in equivalent forms to solve problems

Write expressions in equivalent forms to solve problems.

Perform arithmetic operations on polynomials.
Understand the relationship between zeros and factors of polynomials.
Understand the relationship between zeros and factors of polynomials.

Create equations that describe numbers or relationships
Create equations that describe numbers or relationships

Create equations that describe numbers or relationships

Understand solving equations as a process of reasoning and explain the reasoning
Understand solving equations as a process of reasoning and explain the reasoning.

Solve equations and inequalities in one variable. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines
Use the properties of exponents to transform expressions for exponential functions. For example the expression $1.15 t$ can be rewritten as $(1.151 / 12) 12 t \approx 1$. $01212 t$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.
Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments. \star
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a the remainder on division by $x-a$ is $p(a)$, so $p(a)=0$ if and only if $(x-a)$ is a factor of $p(x)$.
Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.
Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.

Common Core Standar

Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Know there is a complex number i such that $i^{\wedge} 2=-1$, and every complex number has the form $a+b i$ with a and b real.
Use the relation $i^{\wedge} 2=-1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.

Solve quadratic equations with real coefficients that have complex solutions. Interpret parts of an expression, such as terms, factors, and coefficients. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r) n$ as the product of P and a factor not depending on P .
Use the structure of an expression to identify ways to rewrite it. For example, see $\mathrm{x} 4-\mathrm{y} 4$ as (x 2)2 - (y 2)2, thus recognizing it as a difference of squares that can be factored as $(\mathrm{x} 2-\mathrm{y} 2)(\mathrm{x} 2+\mathrm{y} 2)$.
A.SSE. 3 c. (PR)

Subject Grade

Subject	G
Mathematics	H
Mathematics	H
Mathematics	H

Mathematics

Reasoning with Equations and Inequalities
Reasoning with Equations and Inequalities Reasoning with Equations and Inequalities

Reasoning with Equations and
nequalities Inequalities
nterpreting Functions

Mathematics
MathematicsMathematicsHSInterpreting Functions

Building Functions

Solve equations and inequalities in one variable.
Solve systems of equations.

Represent and solve equations and inequalities graphically.

Interpret functions that arise in applications in terms of the context.

Interpret functions that arise in applications in terms of the context.

Interpret functions that arise in applications in terms of the context.

Analyze functions using different representations.
Analyze functions using different representations.
Analyze functions using different representations.

Analyze functions using different representations.

Analyze functions using different representations.

Analyze functions using different representations. Build a function that models a relationship between two quantities.

Build a function that models a relationship between two quantities.

Common Core Standard

Solve quadratic equations by inspection (e.g., for $x^{\wedge} 2=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a $\pm \mathrm{bi}$ for real numbers a and b .
Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.
Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y=-3 x$ and the circle $x 2+y 2=3$.
Explain why the x-coordinates of the points where the graphs of the equations $y=f$ (x) and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. \star
or a function that models a relationship between wo quanties, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. \star
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. \star
Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. \star
Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.
Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.
Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
Use the properties of exponents to interpret expressions for exponential functions For example, identify percent rate of change in functions such as $y=(1.02) t, y=$ $(0.97) t, \mathrm{y}=(1.01) 12 \mathrm{t}, \mathrm{y}=(1.2) \mathrm{t} / 10$, and classify them as representing exponential growth or decay.
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

Write a function that describes a relationship between two quantities. \star Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant the model Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

HPHS ALGEBRA 2

Subject	Grade	Domain	Cluster Statement	Standard Code	Common Core Standard
Mathematics	HS	Building Functions	Build new functions from existing functions.	F.BF. 4 a.	Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x)=2 x 3$ or $f(x)=(x+1) /(x-$ 1) for $x \neq 1$.
Mathematics	HS	Linear and Exponential Models*	Construct and compare linear and exponential models and solve problems.	F.LE. 1 (PR)	Distinguish between situations that can be modeled with linear functions and with exponential functions.
Mathematics	HS	Trigonometric Functions	Extend the domain of trigonometric functions using the unit circle.	F.TF. 1 (PR)	Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
Mathematics	HS	Making Inferences and Justifying Conclusions	Understand and evaluate random processes underlying statistical experiments.	S.IC. 1 (PR)	Understand statistics as a process for making inferences about population parameters based on a random sample from that population.
Mathematics	HS	Making Inferences and Justifying Conclusions	Make inferences and justify conclusions from sample surveys, experiments, and observational studies.	S.IC. 3 (PR)	Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.

HPHS ALGEBRA 2 WITH TRIGONOMETRY

Subject	Grade	Domain	Cluster Statement	Standard Code	
Mathematics	HS				
Mathematics	HS	The Real Number System	Extend the properties of exponents to rational exponents.	N.RN. 1	
Mathematics	HS	The Real Number System	Use properties of rational and irrational numbers.	N.RN.3	
Mathematics	HS	The Complex Number System	Perform arithmetic operations with complex numbers.	N.CN. 1 (PR)	
Mathematics	HS	The Complex Number System	Perform arithmetic operations with complex numbers.	N.CN. 2 (PR)	
Mathematics	HS	The Complex Number System	Perform arithmetic operations with complex numbers.	N.CN.3	
Mathematics	HS	The Complex Number System	Use complex numbers in polynomial identities and equations.	N.CN. 7 (PR)	
Mathematics	HS	Seeing Structure in Expressions	Interpret the structure of expressions.	A.	A.

Common Core Standard

Explain how the definition of the meaning of rational exponents follows from xtending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $51 / 3$ to be the cube root of 5 because we want $(51 / 3) 3=5(1 / 3) 3$ to hold, so $(51 / 3) 3$ must equal 5.
Rewrite expressions involving radicals and rational exponents using the properties of exponents
Explain why the sum or product of two rational numbers is rational; that the sum f a rational number and an irrational number is irrational; and that the product of nonzero rational number and an irrational number is irrational
Know there is a complex number i such that $i^{\wedge} 2=-1$, and every complex numbe has the form $\mathrm{a}+\mathrm{bi}$ with a and b real.
Use the relation $i^{\wedge} 2=-1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers

+) Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers.

Solve quadratic equations with real coefficients that have complex solutions.
nterpret parts of an expression, such as terms, factors, and coefficients.
interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $\mathrm{P}(1+\mathrm{r}) \mathrm{n}$ as the product of P and a factor not depending on P
Use the structure of an expression to identify ways to rewrite it. For example, see $x 4-y 4$ as (x2)2-(y2)2, thus recognizing it as a difference of squares that can be factored as ($x 2-y 2$) ($x 2+y 2$).
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. \star

Factor a quadratic expression to reveal the zeros of the function it defines Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.
Use the properties of exponents to transform expressions for exponential unctions. For example the expression 1.15 t can be rewritten as $(1.151 / 12) 12 \mathrm{t} \approx 1$. $01212 t$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%
Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments. \star
Understand that polynomials form a system analogous to the integers, namely, hey are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a he remainder on division by $x-a$ is $p(a)$, so $p(a)=0$ if and only if $(x-a)$ is a actor of $p(x)$.
dentify zeros of polynomials when suitable factorizations are available, and use he zeros to construct a rough graph of the function defined by the polynomial.

+) Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.

HPHS ALGEBRA 2 WITH TRIGONOMETRY

Subject	Grade	Domain	Cluster Statement	Standard Code	Common Core Standard
Mathematics	HS	Creating Equations*	Create equations that describe numbers or relationships	A.CED. 1 (PR)	Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
Mathematics	HS	Creating Equations*	Create equations that describe numbers or relationships	A.CED. 2 (PR)	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
Mathematics	HS	Creating Equations*	Create equations that describe numbers or relationships	A.CED. 3 (PR)	Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.
Mathematics	HS	Reasoning with Equations and Inequalities	Understand solving equations as a process of reasoning and explain the reasoning.	A.REI. 2	Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.
Mathematics	HS	Reasoning with Equations and Inequalities	Solve equations and inequalities in one variable.	A.REI. 4 (PR)	Solve quadratic equations in one variable.
Mathematics	HS	Reasoning with Equations and Inequalities	Solve equations and inequalities in one variable.	A.REI. 4 a.	Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{\wedge} 2=q$ that has the same solutions. Derive the quadratic formula from this form.
Mathematics	HS	Reasoning with Equations and Inequalities	Solve equations and inequalities in one variable.	A.REI. 4 b .	Solve quadratic equations by inspection (e.g., for $x^{\wedge} 2=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $\mathrm{a} \pm \mathrm{bi}$ for real numbers a and b .
Mathematics	HS	Reasoning with Equations and Inequalities	Solve systems of equations.	A.REI. 6 (PR)	Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.
Mathematics	HS	Reasoning with Equations and Inequalities	Solve systems of equations.	A.REI. 7	Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y=-3 x$ and the circle $x 2+y 2=3$.
Mathematics	HS	Reasoning with Equations and Inequalities	Represent and solve equations and inequalities graphically.	A.REI. 11 (PR)	Explain why the x-coordinates of the points where the graphs of the equations $y=$ $f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.
Mathematics	HS	Reasoning with Equations and Inequalities	Represent and solve equations and inequalities graphically.	A.REI. 12 (PR)	Graph the solutions to a linear inequality in two variables as a half plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.
Mathematics	HS	Interpreting Functions	Interpret functions that arise in applications in terms of the context.	F.IF. 4 (PR)	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.
Mathematics	HS	Interpreting Functions	Interpret functions that arise in applications in terms of the context.	F.IF. 5 (PR)	Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.
Mathematics	HS	Interpreting Functions	Interpret functions that arise in applications in terms of the context.	F.IF. 6 (PR)	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph
Mathematics	HS	Interpreting Functions	Analyze functions using different representations.	F.IF. 7 c c (PR)	Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.
Mathematics	HS	Interpreting Functions	Analyze functions using different representations.	F.IF. 7 e. (PR)	Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.
Mathematics	HS	Interpreting Functions	Analyze functions using different representations.	F.IF. 8 (PR)	Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.

HPHS ALGEBRA 2 WITH TRIGONOMETRY

Subject	Grade	Domain	Cluster Statement	Standard Code	Common Core Standard
Mathematics	HS	Interpreting Functions	Analyze functions using different representations.	F.IF. 8 a. (PR)	Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
Mathematics	HS	Interpreting Functions	Analyze functions using different representations.	F.IF. 8 b. (PR)	Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y=$ (1.02)t, $\mathrm{y}=(0.97) \mathrm{t}, \mathrm{y}=(1.01) 12 \mathrm{t}, \mathrm{y}=(1.2) \mathrm{t} / 10$, and classify them as representing exponential growth or decay.
Mathematics	HS	Interpreting Functions	Analyze functions using different representations.	F.IF. 9 (PR)	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.
Mathematics	HS	Building Functions	Build a function that models a relationship between two quantities.	F.BF. 1 (PR)	Write a function that describes a relationship between two quantities. \star
Mathematics	HS	Building Functions	Build a function that models a relationship between two quantities.	F.BF. 1 b. (PR)	Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.
Mathematics	HS	Building Functions	Build new functions from existing functions.	F.BF. 3 (PR)	Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+$ k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Mathematics	HS	Building Functions	Build new functions from existing functions.	F.BF. 4	Find inverse functions.
Mathematics	HS	Building Functions	Build new functions from existing functions.	F.BF. 4 a.	Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x)=2 \times 3$ or $f(x)=(x+1) /(x-$ 1) for $x \neq 1$.
Mathematics	HS	Building Functions	Build new functions from existing functions.	F.BF. 4 b.	(+) Verify by composition that one function is the inverse of another.
Mathematics	HS	Linear and Exponential Models*	Construct and compare linear and exponential models and solve problems.	F.LE. 1 (PR)	Distinguish between situations that can be modeled with linear functions and with exponential functions.
Mathematics	HS	Linear and Exponential Models*	Construct and compare linear and exponential models and solve problems.	F.LE. 4	For exponential models, express as a logarithm the solution to abct = d where a, c, and d are numbers and the base b is 2,10 , or e; evaluate the logarithm using technology.
Mathematics	HS	Trigonometric Functions	Extend the domain of trigonometric functions using the unit circle.	F.TF. 1 (PR)	Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
Mathematics	HS	Making Inferences and Justifying Conclusions	Understand and evaluate random processes underlying statistical experiments.	S.IC. 1 (PR)	Understand statistics as a process for making inferences about population parameters based on a random sample from that population.
Mathematics	HS	Making Inferences and Justifying Conclusions	Make inferences and justify conclusions from sample surveys, experiments, and observational studies.	S.IC. 3 (PR)	Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.

HPHS ALGEBRA 2 WITH TRIGONOMETRY HONORS

Subject	Grade	Domain	Cluster Statement	Standard Code
Mathematics	HS	The Real Number System	Extend the properties of exponents to rational exponents.	N.RN. 1
Mathematics	HS	The Real Number System	Extend the properties of exponents to rational exponents.	N.RN. 2 (PR)
Mathematics	HS	The Real Number System	Use properties of rational and irrational numbers.	N.RN. 3
Mathematics	HS	The Complex Number System	Perform arithmetic operations with complex numbers.	N.CN. 1 (PR)
Mathematics	HS	The Complex Number System	Perform arithmetic operations with complex numbers.	N.CN. 2 (PR)
Mathematics	HS	The Complex Number System	Perform arithmetic operations with complex numbers.	N.CN. 3
Mathematics	HS	The Complex Number System	Use complex numbers in polynomial identities and equations.	N.CN. 7 (PR)
Mathematics	HS	The Complex Number System	Use complex numbers in polynomial identities and equations.	N.CN. 8
Mathematics	HS	The Complex Number System	Use complex numbers in polynomial identities and equations.	N.CN. 9
Mathematics	HS	Vector and Matrix Quantities	Perform operations on matrices and use matrices in applications.	N.VM. 7
Mathematics	HS	Vector and Matrix Quantities	Perform operations on matrices and use matrices in applications.	N.VM. 8
Mathematics	HS	Vector and Matrix Quantities	Perform operations on matrices and use matrices in applications.	N.VM. 9
Mathematics	HS	Vector and Matrix Quantities	Perform operations on matrices and use matrices in applications.	N.VM. 10
Mathematics	HS	Seeing Structure in Expressions	Interpret the structure of expressions.	A.SSE. 1 a. (PR)
Mathematics	HS	Seeing Structure in Expressions	Interpret the structure of expressions.	A.SSE. 1 b. (PR)
Mathematics	HS	Seeing Structure in Expressions	Interpret the structure of expressions.	A.SSE. 2 (PR)
Mathematics	HS	Seeing Structure in Expressions	Write expressions in equivalent forms to solve problems.	A.SSE. 3 (PR)
Mathematics	HS	Seeing Structure in Expressions	Write expressions in equivalent forms to solve problems.	A.SSE. 3 a. (PR)
Mathematics	HS	Seeing Structure in Expressions	Write expressions in equivalent forms to solve problems.	A.SSE. 3 b. (PR)
Mathematics	HS	Seeing Structure in Expressions	Write expressions in equivalent forms to solve problems.	A.SSE. 3 c. (PR)

Common Core Standard

Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 51/3 to be the cube root of 5 because we want $(51 / 3) 3=5(1 / 3) 3$ to hold, so $(51 / 3) 3$ must equal 5 .
Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.

Know there is a complex number i such that $i^{\wedge} 2=-1$, and every complex number has the form $\mathrm{a}+\mathrm{bi}$ with a and b real.
Use the relation $i^{\wedge} 2=-1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.
(+) Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers.

Solve quadratic equations with real coefficients that have complex solutions. ${ }^{(+)}$Extend polynomial identities to the complex numbers. For example, rewrite $x^{\wedge} 2+4$ as $(x+2 i)(x-2 i)$.
${ }^{(+)}$Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.
(+) Multiply matrices by scalars to produce new matrices, e.g., as when all of the payoffs in a game are doubled.
(+) Add, subtract, and multiply matrices of appropriate dimensions.
(+) Understand that, unlike multiplication of numbers, matrix multiplication for square matrices is not a commutative operation, but still satisfies the associative and distributive properties.
${ }^{+}$) Understand that the zero and identity matrices play a role in matrix addition and multiplication similar to the role of 0 and 1 in the real numbers. The determinant of a square matrix is nonzero if and only if the matrix has a multiplicative inverse.

Interpret parts of an expression, such as terms, factors, and coefficients
Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $\mathrm{P}(1+r) \mathrm{n}$ as the product of P and a factor not depending on P .
Use the structure of an expression to identify ways to rewrite it. For example, see $x 4-y 4$ as (x2)2-(y2)2, thus recognizing it as a difference of squares that can be factored as ($\mathrm{x} 2-\mathrm{y} 2$) $(\mathrm{x} 2+\mathrm{y} 2$)
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. \star

Factor a quadratic expression to reveal the zeros of the function it defines. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.
Use the properties of exponents to transform expressions for exponential functions. For example the expression $1.15 t$ can be rewritten as $(1.151 / 12) 12 t \approx 1$ 01212 t to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.

HPHS A	BRA	VITH TRIGONOMETR	S		
Subject	Grade	Domain	Cluster Statement	Standard Code	Common Core Standard
Mathematics	HS	Seeing Structure in Expressions	Write expressions in equivalent forms to solve problems.	A.SSE. 4 (PR)	Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments.
Mathematics	HS	Arithmetic with Polynomials and Rational Expressions	Perform arithmetic operations on polynomials.	A.APR. 1 (PR)	Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Mathematics	HS	Arithmetic with Polynomials and Rational Expressions	Understand the relationship between zeros and factors of polynomials.	A.APR. 2	Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a, the remainder on division by $x-a$ is $p(a)$, so $p(a)=0$ if and only if $(x-a)$ is a factor of $p(x)$.
Mathematics	HS	Arithmetic with Polynomials and Rational Expressions	Understand the relationship between zeros and factors of polynomials.	A.APR. 3 (PR)	Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.
Mathematics	HS	Arithmetic with Polynomials and Rational Expressions	Use polynomial identities to solve problems.	A.APR. 5	(+) Know and apply the Binomial Theorem for the expansion of $(x+y) n$ in powers of x and y for a positive integer n , where x and y are any numbers, with coefficients determined for example by Pascal's Triangle. (The Binomial Theorem can be proved by mathematical induction or by a combinatorial argument.)
Mathematics	HS	Arithmetic with Polynomials and Rational Expressions	Rewrite rational expressions.	A.APR. 6	Rewrite simple rational expressions in different forms; write $a(x) / b(x)$ in the form q $(x)+r(x) / b(x)$, where $a(x), b(x), q(x)$, and $r(x)$ are polynomials with the degree of r (x) less than the degree of $b(x)$, using inspection, long division, or, for the more complicated examples, a computer algebra system.
Mathematics	HS	Arithmetic with Polynomials and Rational Expressions	Rewrite rational expressions.	A.APR. 7	${ }^{(+)}$Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.
Mathematics	HS	Creating Equations*	Create equations that describe numbers or relationships	A.CED. 1 (PR)	Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
Mathematics	HS	Creating Equations*	Create equations that describe numbers or relationships	A.CED. 2 (PR)	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
Mathematics	HS	Creating Equations*	Create equations that describe numbers or relationships	A.CED. 3 (PR)	Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.
Mathematics	HS	Reasoning with Equations and Inequalities	Understand solving equations as a process of reasoning and explain the reasoning.	A.REI. 2	Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.
Mathematics	HS	Reasoning with Equations and Inequalities	Solve equations and inequalities in one variable.	A.REI. 4 (PR)	Solve quadratic equations in one variable.
Mathematics	HS	Reasoning with Equations and Inequalities	Solve equations and inequalities in one variable.	A.REI. 4 a.	Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{\wedge} 2=q$ that has the same solutions. Derive the quadratic formula from this form.
Mathematics	HS	Reasoning with Equations and Inequalities	Solve equations and inequalities in one variable.	A.REI. 4 b .	Solve quadratic equations by inspection (e.g., for $x^{\wedge} 2=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $\mathrm{a} \pm \mathrm{bi}$ for real numbers a and b .
Mathematics	HS	Reasoning with Equations and Inequalities	Solve systems of equations.	A.REI. 6 (PR)	Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.
Mathematics	HS	Reasoning with Equations and Inequalities	Solve systems of equations.	A.REI. 7	Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y=-3 x$ and the circle $x 2+y 2=3$.
Mathematics	HS	Reasoning with Equations and Inequalities	Solve systems of equations.	A.REI. 8	$(+)$ Represent a system of linear equations as a single matrix equation in a vector variable.
Mathematics	HS	Reasoning with Equations and Inequalities	Solve systems of equations.	A.REI. 9	(+) Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using technology for matrices of dimension 3×3 or greater).

Subject	Grade	Domain	Cluster Statement	Standard Code	Common Core Standard
Mathematics	HS	Reasoning with Equations and Inequalities	Represent and solve equations and inequalities graphically.	A.REI. 11 (PR)	Explain why the x-coordinates of the points where the graphs of the equations $y=$ $f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $\mathrm{g}(\mathrm{x})$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.
Mathematics	HS	Reasoning with Equations and Inequalities	Represent and solve equations and inequalities graphically.	A.REI. 12 (PR)	Graph the solutions to a linear inequality in two variables as a half plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.
Mathematics	HS	Interpreting Functions	Interpret functions that arise in applications in terms of the context.	F.IF. 4 (PR)	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.
Mathematics	HS	Interpreting Functions	Interpret functions that arise in applications in terms of the context.	F.IF. 5 (PR)	Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.
Mathematics	HS	Interpreting Functions	Interpret functions that arise in applications in terms of the context.	F.IF. 6 (PR)	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph
Mathematics	HS	Interpreting Functions	Analyze functions using different representations.	F.IF. $7 \mathrm{c} .(\mathrm{PR}$)	Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.
Mathematics	HS	Interpreting Functions	Analyze functions using different representations.	F.IF. 7 e. (PR)	Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.
Mathematics	HS	Interpreting Functions	Analyze functions using different representations.	F.IF. 8 (PR)	Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
Mathematics	HS	Interpreting Functions	Analyze functions using different representations.	F.IF. 8 a. (PR)	Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
Mathematics	HS	Interpreting Functions	Analyze functions using different representations.	F.IF. 8 b. (PR)	Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y=$ $(1.02) t, y=(0.97) t, y=(1.01) 12 t, y=(1.2) t / 10$, and classify them as representing exponential growth or decay.
Mathematics	HS	Interpreting Functions	Analyze functions using different representations.	F.IF. 9 (PR)	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.
Mathematics	HS	Building Functions	Build a function that models a relationship between two quantities.	F.BF. 1 (PR)	Write a function that describes a relationship between two quantities. \star
Mathematics	HS	Building Functions	Build a function that models a relationship between two quantities.	F.BF. 1 b. (PR)	Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.
Mathematics	HS	Building Functions	Build a function that models a relationship between two quantities.	F.BF. 1 c. (PR)	${ }^{(+)}$Compose functions. For example, if $T(y)$ is the temperature in the atmosphere as a function of height, and $h(t)$ is the height of a weather balloon as a function of time, then $\mathrm{T}(\mathrm{h}(\mathrm{t}))$ is the temperature at the location of the weather balloon as a function of time.
Mathematics	HS	Building Functions	Build new functions from existing functions.	F.BF. 3 (PR)	Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+$ k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

HPHS A	RA	VITH TRIGONOMETR	S		
Subject	Grade	Domain	Cluster Statement	Standard Code	Common Core Standard
Mathematics	HS	Building Functions	Build new functions from existing functions.	F.BF. 4	Find inverse functions.
Mathematics	HS	Building Functions	Build new functions from existing functions.	F.BF. 4 a.	Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x)=2 \times 3$ or $f(x)=(x+1) /(x-$ 1) for $x \neq 1$.
Mathematics	HS	Building Functions	Build new functions from existing functions.	F.BF. 4 b.	(+) Verify by composition that one function is the inverse of another.
Mathematics	HS	Building Functions	Build new functions from existing functions.	F.BF. 4 c .	(+) Read values of an inverse function from a graph or a table, given that the function has an inverse.
Mathematics	HS	Building Functions	Build new functions from existing functions.	F.BF. 4 d.	(+) Produce an invertible function from a non-invertible function by restricting the domain.
Mathematics	HS	Building Functions	Build new functions from existing functions.	F.BF. 5	(+) Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.
Mathematics	HS	Linear and Exponential Models*	Construct and compare linear and exponential models and solve problems.	F.LE. 1 (PR)	Distinguish between situations that can be modeled with linear functions and with exponential functions.
Mathematics	HS	Linear and Exponential Models*	Construct and compare linear and exponential models and solve problems.	F.LE. 4	For exponential models, express as a logarithm the solution to abct = d where a , c, and d are numbers and the base b is 2,10 , or e; evaluate the logarithm using technology.
Mathematics	HS	Trigonometric Functions	Extend the domain of trigonometric functions using the unit circle.	F.TF. 1 (PR)	Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
Mathematics	HS	Similarity, Right Triangles, and Trigonometry	Define trigonometric ratios and solve problems involving right triangles.	G.SRT. 7	Explain and use the relationship between the sine and cosine of complementary angles.
Mathematics	HS	Similarity, Right Triangles, and Trigonometry	Define trigonometric ratios and solve problems involving right triangles.	G.SRT. 8 (PR)	Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.«
Mathematics	HS	Similarity, Right Triangles, and Trigonometry	Apply trigonometry to general triangles.	G.SRT. 9	(+) Derive the formula $A=1 / 2 a b \sin (C)$ for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.
Mathematics	HS	Similarity, Right Triangles, and Trigonometry	Apply trigonometry to general triangles.	G.SRT. 10	(+) Prove the Laws of Sines and Cosines and use them to solve problems.
Mathematics	HS	Similarity, Right Triangles, and Trigonometry	Apply trigonometry to general triangles.	G.SRT. 11	(+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).
Mathematics	HS	Expressing Geometric Properties with Equations	Translate between the geometric description and the equation for a conic section.	G.GPE. 1 (PR)	Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.
Mathematics	HS	Expressing Geometric Properties with Equations	Translate between the geometric description and the equation for a conic section.	G.GPE. 2	Derive the equation of a parabola given a focus and directrix.
Mathematics	HS	Expressing Geometric Properties with Equations	Translate between the geometric description and the equation for a conic section.	G.GPE. 3	(+)Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant.
Mathematics	HS	Interpreting Categorical and Quantitative Data	Summarize, represent, and interpret data on two categorical and quantitative variables.	S.ID. 6 c.	Fit a linear function for a scatter plot that suggests a linear association.
Mathematics	HS	Interpreting Categorical and Quantitative Data	Interpret linear models.	S.ID. 7 (PR)	Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.
Mathematics	HS	Making Inferences and Justifying Conclusions	Understand and evaluate random processes underlying statistical experiments.	S.IC. 1 (PR)	Understand statistics as a process for making inferences about population parameters based on a random sample from that population.
Mathematics	HS	Making Inferences and Justifying Conclusions	Make inferences and justify conclusions from sample surveys, experiments, and observational studies.	S.IC. 3 (PR)	Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.
Mathematics	HS	Conditional Probability and the Rules of Probability	Understand independence and conditional probability and use them to interpret data.	S.CP. 1	Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").

HPHS TRIGONOMETRY \& RELATED TOPICS

Subject	Grade	Domain	Cluster Statement	Standard Code	Common Core Standard
Mathematics	HS	Vector and Matrix Quantities	Perform operations on vectors.	N.VM. 4 a. (PR)	Add vectors end-to-end, component-wise, and by the parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the magnitudes.
Mathematics	HS	Vector and Matrix Quantities	Perform operations on vectors.	N.VM. 4 b. (PR)	Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum.
Mathematics	HS	Seeing Structure in Expressions	Write expressions in equivalent forms to solve problems.	A.SSE. 4 (PR)	Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments.
Mathematics	HS	Interpreting Functions	Analyze functions using different representations.	F.IF. 7 d. (PR)	(+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.
Mathematics	HS	Building Functions	Build a function that models a relationship between two quantities.	F.BF. 1 c. (PR)	$(+)$ Compose functions. For example, if $\mathrm{T}(\mathrm{y})$ is the temperature in the atmosphere as a function of height, and $\mathrm{h}(\mathrm{t})$ is the height of a weather balloon as a function of time, then $\mathrm{T}(\mathrm{h}(\mathrm{t}))$ is the temperature at the location of the weather balloon as a function of time.
Mathematics	HS	Linear and Exponential Models*	Construct and compare linear and exponential models and solve problems.	F.LE. 4	For exponential models, express as a logarithm the solution to abct = d where a, c, and d are numbers and the base b is 2,10 , or e; evaluate the logarithm using technology.
Mathematics	HS	Similarity, Right Triangles, and Trigonometry	Define trigonometric ratios and solve problems involving right triangles.	G.SRT. 8 (PR)	Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.«
Mathematics	HS	Similarity, Right Triangles, and Trigonometry	Apply trigonometry to general triangles.	G.SRT. 10	(+) Prove the Laws of Sines and Cosines and use them to solve problems.
Mathematics	HS	Similarity, Right Triangles, and Trigonometry	Apply trigonometry to general triangles.	G.SRT. 11	(+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).

HPHS PRECALCULUS

Subject	Grade	Domain
Mathematics	HS	The Complex Number System
Mathematics	HS	The Complex Number System
Mathematics	HS	Vector and Matrix Quantities
Mathematics	HS	Vector and Matrix Quantities
Mathematics	HS	Seeing Structure in Expressions

Mathematics H

Exprecture in Expressions

Arithmetic with Polynomials and Rational Expressions Arithmetic with Polynomials and Rational Expressions
Mathematics HS

Mathematics	HS	Arithmetic with Polynomials and Rational Expressions
Mathematics	HS	Interpreting Functions

Standard Code

Common Core Standard

+) Extend polynomial identities to the complex numbers. For example, rewrite $x^{\wedge} 2+4$ as $(x+2 i)(x-2 i)$.
+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.
Add vectors end-to-end, component-wise, and by the parallelogram rule Understand that the magnitude of a sum of two vectors is typically not the sum of he magnitudes.
Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum.
Use the properties of exponents to transform expressions for exponential unctions. For example the expression $1.15 t$ can be rewritten as $(1.151 / 12) 12 t \approx 1$ $01212 t$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.
Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments. \star
Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a, he remainder on division by $x-a$ is $p(a)$, so $p(a)=0$ if and only if $(x-a)$ is a factor of $p(x)$.
dentify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.
Rewrite simple rational expressions in different forms; write $a(x) / b(x)$ in the form q $(x)+r(x) / b(x)$, where $a(x), b(x), q(x)$, and $r(x)$ are polynomials with the degree of x) less than the degree of $b(x)$, using inspection, long division, or, for the more complicated examples, a computer algebra system.
${ }^{+}$) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.
+) Compose functions. For example, if $\mathrm{T}(\mathrm{y})$ is the temperature in the atmosphere as a function of height, and $h(t)$ is the height of a weather balloon as a function of me, then $T(h(t)$ is the temperature at the location of the weather balloon as a unction of time.
Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. Find inverse functions.
Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x)=2 x 3$ or $f(x)=(x+1) /(x-$ 1) for $x \neq 1$.
(+) Verify by composition that one function is the inverse of another
(+) Read values of an inverse function from a graph or a table, given that the function has an inverse
${ }^{+}+$) Produce an invertible function from a non-invertible function by restricting the domain.
(+) Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.
For exponential models, express as a logarithm the solution to abct = d where a, , and d are numbers and the base b is 2,10 , or e; evaluate the logarithm using echnology.
+) Prove the Laws of Sines and Cosines and use them to solve problems +) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces)

HPHS PRECALCULUS ADVANCED

Subject	Grade	Domain
Mathematics	HS	The Complex Number System
Mathematics	HS	The Complex Number System
Mathematics	HS	The Complex Number System
Mathematics	HS	Vector and Matrix Quantities
Mathematics	HS	Vector and Matrix Quantities
Mathematics	HS	Vector and Matrix Quantities
Mathematics	HS	Vector and Matrix Quantities
Mathematics	HS	Vector and Matrix Quantities
Mathematics	HS	Vector and Matrix Quantities
Mathematics	HS	Vector and Matrix Quantities
Mathematics	HS	Vector and Matrix Quantities
Mathematics	HS	Vector and Matrix Quantities
Mathematics	HS	Vector and Matrix Quantities
Mathematics	HS	Seeing Structure in Expressions
Mathematics	HS	Seeing Structure in Expressions
Mathematics	HS	Arithmetic with Polynomials and Rational Expressions
Mathematics	HS	Arithmetic with Polynomials and Rational Expressions
Mathematics	HS	Arithmetic with Polynomials and Rational Expressions
Mathematics	HS	Creating Equations*
Mathematics	HS	Interpreting Functions

Cluster Statement	Standard Code
Represent complex numbers and their operations on the complex plane.	N.CN. 4
Use complex numbers in polynomial identities and equations.	N.CN. 8
Use complex numbers in polynomial identities and equations.	N.CN. 9
Represent and model with vector quantities.	N.VM. 1
Represent and model with vector quantities.	N.VM. 2
Represent and model with vector quantities.	N.VM. 3
Perform operations on vectors.	N.VM. 4 (PR)
Perform operations on vectors.	N.VM. 4 a. (PR)
Perform operations on vectors.	N.VM. 4 b. (PR)
Perform operations on vectors.	N.VM. 4 c.
Perform operations on vectors.	N.VM. 5
Perform operations on vectors.	N.VM. 5 a.
Perform operations on vectors.	N.VM. 5 b.
Write expressions in equivalent forms to solve problems.	A.SSE. 3 c. (PR)
Write expressions in equivalent forms to solve problems.	A.SSE. 4 (PR)
Understand the relationship between zeros and factors of polynomials.	A.APR. 2
Understand the relationship between zeros and factors of polynomials.	A.APR. 3 (PR)
Rewrite rational expressions.	A.APR. 6
Create equations that describe numbers or relationships	A.CED. 3 (PR)
Analyze functions using different representations.	F.IF. 7 d. (PR)

Common Core Standard

${ }^{+}$) Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number.

+ Extend polynomial identities to the complex numbers. For example, rewrite $x^{\wedge} 2+4$ as $(x+2 i)(x-2 i)$.
${ }^{(+)}$Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.
+) Recognize vector quantities as having both magnitude and direction Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes (e.g., v, |v|, ||v|, v).
+) Find the components of a vector by subtracting the coordinates of an initia point from the coordinates of a terminal point.
${ }^{+}$) Solve problems involving velocity and other quantities that can be epresented by vectors.
+) Add and subtract vectors.
Add vectors end-to-end, component-wise, and by the parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the magnitudes.
Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum

Understand vector subtraction $v-w$ as $v+(-w)$, where $-w$ is the additive inverse , with the same magnitude as w and pointing in the opposite direction. Represent vector subtraction graphically by connecting the tips in the appropriate order, and perform vector subtraction component-wise.
(+) Multiply a vector by a scalar.
Represent scalar multiplication graphically by scaling vectors and possibly eversing their direction; perform scalar multiplication component-wise, e.g., as c vx, vy) $=(c v x, c v y)$
Compute the magnitude of a scalar multiple cv using $\|\mathrm{cv}\|=|\mathrm{c}| \mathrm{v}$. Compute the direction of cv knowing that when $|\mathrm{c}| \mathrm{v} \neq 0$, the direction of cv is either along v (fo $c>0$) or against v (for $\mathrm{c}<0$).
se the properties of exponents to transform expressions for exponential unctions. For example the expression $1.15 t$ can be rewritten as $(1.151 / 12) 12 t \approx 1$. $01212 t$ to reveal the approximate equivalent monthly interest rate if the annual ate is 15%.
Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments. \star
Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a he remainder on division by $x-a$ is $p(a)$, so $p(a)=0$ if and only if $(x-a)$ is a factor of $p(x)$.
dentify zeros of polynomials when suitable factorizations are available, and use he zeros to construct a rough graph of the function defined by the polynomial.
Rewrite simple rational expressions in different forms; write $a(x) / b(x)$ in the form q $(x)+r(x) / b(x)$, where $a(x), b(x), q(x)$, and $r(x)$ are polynomials with the degree of r (x) less than the degree of $b(x)$, using inspection, long division, or, for the more complicated examples, a computer algebra system.
Represent constraints by equations or inequalities, and by systems of equation and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.

+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.

HPHS PRECALCULUS ADVANCED

Subject
Mathematics

Domain
Mathematics
HS

Mathematics
HS

Mathematics
HS
Mathematics

Mathematics
Mathematics HS HS Building Functions Mathematics HS Buildir

Building Functions Building Functions
Mathematics HS

Mathematics HS Building Functions Linear and Exponential
Mathematics HS Models* Similarity, Right Triangles, and TrigonometryMathematics

Cluster Statement

Build a function that models a relationship between two quantities.

Build a function that models a relationship between two quantities.
Build a function that models a relationship between two quantities.
Build new functions from existing functions.

Build new functions from existing functions.
Build new functions from existing functions.
Build new functions from existing functions.
Build new functions from existing functions.
Build new functions from existing functions.
Construct and compare linear and exponential models and solve problems.

Apply trigonometry to general triangles.
\square G.SRT. 10

Apply trigonometry to general triangles.
G.SRT. 11

Common Core Standard

Determine an explicit expression, a recursive process, or steps for calculation from a context.
${ }^{+}+$) Compose functions. For example, if $\mathrm{T}(\mathrm{y})$ is the temperature in the atmosphere as a function of height, and $h(t)$ is the height of a weather balloon as a function of time, then $T(h(t)$) is the temperature at the location of the weather balloon as a function of time.
Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. \star Find inverse functions.
Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x)=2 x 3$ or $f(x)=(x+1) /(x-$ 1) for $x \neq 1$.
${ }^{+}+$) Verify by composition that one function is the inverse of another
+) Read values of an inverse function from a graph or a table, given that the unction has an inverse.

+) Produce an invertible function from a non-invertible function by restricting the domain.
+) Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.
For exponential models, express as a logarithm the solution to abct = d where a, c , and d are numbers and the base b is 2,10 , or e ; evaluate the logarithm using echnology.
(+) Prove the Laws of Sines and Cosines and use them to solve problems (+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces)

HPHS PRECALCULUS ADVANCED

Subject	Grade	Domain
Mathematics	HS	The Complex Number System
Mathematics	HS	The Complex Number System
Mathematics	HS	The Complex Number System
Mathematics	HS	The Complex Number System
Mathematics	HS	Vector and Matrix Quantities
Mathematics	HS	Vector and Matrix Quantities
Mathematics	HS	Vector and Matrix Quantities
Mathematics	HS	Vector and Matrix Quantities
Mathematics	HS	Vector and Matrix Quantities
Mathematics	HS	Arithmetic with Polynomials
and Rational Expressions		
Mathematics	HS	Interpreting Functions
Mathematics	HS	Vunctions
Matics	HS	Vector and Matrix Quantities
Mathematics	HS	Arithmetic with Polynomials
and Rational Expressions		
Mathematics	HS	Arithmetic with Polynomials and Rational Expressions
Mathematics	HS	HS

Cluster Statement

Represent complex numbers and their operations on the complex plane.

Represent complex numbers and their operations on the complex plane
Use complex numbers in polynomial iderties and equations.
Use complex numbers in polynomial identities and equations.

Represent and model with vector quantities. N.VM. 1
Represent and model with vector quantities.
Represent and model with vector quantities.
Perform operations on vectors.

Perform operations on vectors.
Perform operations on vectors.

Perform operations on vectors.
Perform operations on vectors.

Perform operations on vectors.

Perform operations on vectors

Write expressions in equivalent forms to solve problems.
Understand the relationship between zeros and factors of polynomials.
polynomials.

Analyze functions using different representations. Build a function that models a relationship between two quantities.
N.VM. 2
A.APR. 3 (PR)

Standard Code

Common Core Standard

(+) Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number.
${ }^{+}+$) Represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex plane; use properties of this
epresentation for computation. For example, $(-1+3 i)^{\wedge} 3=8$ because $(-1+3 i)$ has modulus 2 and argument 120°.
${ }^{(+)}$Extend polynomial identities to the complex numbers. For example, rewrite $x^{\wedge} 2+4$ as $(x+2 i)(x-2 i)$.

+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.
(+) Recognize vector quantities as having both magnitude and direction. Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes (e.g., v, |v|, \|v\|\|, v).
++ Find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point.
+) Solve problems involving velocity and other quantities that can be
represented by vectors.
+) Add and subtract vectors.
Add vectors end-to-end, component-wise, and by the parallelogram rule Understand that the magnitude of a sum of two vectors is typically not the sum of the magnitudes
Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum.
Understand vector subtraction $\mathrm{v}-\mathrm{w}$ as $\mathrm{v}+(-\mathrm{w})$, where -w is the additive inverse of w, with the same magnitude as w and pointing in the opposite direction. Represent vector subtraction graphically by connecting the tips in the appropriate order, and perform vector subtraction component-wise.
(+) Multiply a vector by a scalar.
Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar multiplication component-wise, e.g., as c vx, vy) = (cvx, cvy).
Compute the magnitude of a scalar multiple cv using $\|\mathrm{cv}\|=|\mathrm{c}| \mathrm{v}$. Compute the direction of cv knowing that when $|\mathrm{c}| \mathrm{v} \neq 0$, the direction of cv is either along v (for $c>0$) or against v (for $\mathrm{c}<0$).
Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments. \star
Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a, the remainder on division by $x-a$ is $p(a)$, so $p(a)=0$ if and only if $(x-a)$ is a factor of $p(x)$.
dentify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.
Rewrite simple rational expressions in different forms; write $a(x) / b(x)$ in the form q $(x)+r(x) / b(x)$, where $a(x), b(x), q(x)$, and $r(x)$ are polynomials with the degree of r (x) less than the degree of $b(x)$, using inspection, long division, or, for the more complicated examples, a computer algebra system.
(+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.
Determine an explicit expression, a recursive process, or steps for calculation from a context.

HPHS PRECALCULUS ADVANCED

Subject	Grade	Domain	Cluster Statement	Standard Code	Common Core Standard
Mathematics	HS	Building Functions	Build a function that models a relationship between two quantities.	F.BF. 1 c. (PR)	(+) Compose functions. For example, if $\mathrm{T}(\mathrm{y})$ is the temperature in the atmosphere as a function of height, and $h(t)$ is the height of a weather balloon as a function of time, then $T(h(t))$ is the temperature at the location of the weather balloon as a function of time.
Mathematics	HS	Building Functions	Build a function that models a relationship between two quantities.	F.BF. 2	Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.
Mathematics	HS	Building Functions	Build new functions from existing functions.	F.BF. 4	Find inverse functions.
Mathematics	HS	Building Functions	Build new functions from existing functions.	F.BF. 4 a.	Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x)=2 x 3$ or $f(x)=(x+1) /(x-$ 1) for $x \neq 1$.
Mathematics	HS	Building Functions	Build new functions from existing functions.	F.BF. 4 b.	(+) Verify by composition that one function is the inverse of another.
Mathematics	HS	Building Functions	Build new functions from existing functions.	F.BF. 4 c .	(+) Read values of an inverse function from a graph or a table, given that the function has an inverse.
Mathematics	HS	Building Functions	Build new functions from existing functions.	F.BF. 4 d.	(+) Produce an invertible function from a non-invertible function by restricting the domain.
Mathematics	HS	Building Functions	Build new functions from existing functions.	F.BF. 5	${ }^{(+)}$Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.
Mathematics	HS	Similarity, Right Triangles, and Trigonometry	Apply trigonometry to general triangles.	G.SRT. 10	${ }^{(+)}$Prove the Laws of Sines and Cosines and use them to solve problems.
Mathematics	HS	Similarity, Right Triangles, and Trigonometry	Apply trigonometry to general triangles.	G.SRT. 11	(+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).

HPHS INTRO TO COMPUTER SCIENCE

Subject	Grade	Domain	Cluster Statement	Standard Code	Common Core Standard
Computer Science	9-10	Computing Systems	Devices	9-10.CS. 01	Explain how abstractions hide the underlying implementation details of computing systems embedded in everyday objects
Computer Science	9-10	Computing Systems	Hardwarde and Software	9-10.CS. 02	Compare levels of abstraction and interactions between application software, system software, and hardware layers.
Computer Science	9-10	Computing Systems	Troubleshooting	9-10.CS. 03	Develop guidelines that convey systematic troubleshooting strategies that others can use to identify and fix errors.
Computer Science	9-10	Networks and the Internet	Network Communication and Organization	9-10.NI. 05	Give examples to illustrate how sensitive data can be affected by malware and other attacks.
Computer Science	9-10	Networks and the Internet	Network Communication and Organization	9-10.NI. 06	Compare various security measures, considering tradeoffs between the usability and security of a computing system.
Computer Science	9-10	Networks and the Internet	Cybersecurity	9-10.NI. 08	Explain tradeoffs when selecting and implementing cybersecurity recommendations.
Computer Science	9-10	Data and Analysis	Storage	9-10.DA. 09	Translate between different bit representations of real-world phenomena, such as characters, numbers, and images.
Computer Science	9-10	Data and Analysis	Storage	9-10.DA. 10	Evaluate the tradeoffs in how data elements are organized and stored. Collection, Visualization, and Transformation
Computer Science	9-10	Data and Analysis	Collection, Visualization, and Transformation	9-10.DA. 11	Create interactive data visualizations using software tools to help others better understand real-world phenomena.
Computer Science	9-10	Algorithms and Programming	Algorithms	9-10.AP. 13	Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and personal interests.
Computer Science	9-10	Algorithms and Programming	Control	9-10.AP. 15	Justify the selection of specific control structures when tradeoffs involve implementation, readability, and program performance, and explain the benefits and drawbacks of choices made.
Computer Science	9-10	Algorithms and Programming	Control	9-10.AP. 16	Design and iteratively develop computational artifacts for practical intent, personal expression, or to address a societal issue by using events to initiate instructions.
Computer Science	9-10	Algorithms and Programming	Control	9-10.AP. 17	Decompose problems into smaller components through systematic analysis, using constructs such as procedures, modules, or objects.
Computer Science	9-10	Algorithms and Programming	Modularity	9-10.AP. 18	Create artifacts by using procedures within a program, combinations of data and procedures, or independent but interrelated programs.
Computer Science	9-10	Algorithms and Programming	Modularity	9-10.AP. 19	Systematically design and develop programs for broad audiences by incorporating feedback from users.
Computer Science	9-10	Algorithms and Programming	Program Development	9-10.AP. 21	Evaluate and refine computational artifacts to make them more usable and accessible.
Computer Science	9-10	Algorithms and Programming	Program Development	9-10.AP. 22	Design and develop computational artifacts working in team roles using collaborative tools.
Computer Science	9-10	Algorithms and Programming	Program Development	9-10.AP. 23	Document design decisions using text, graphics, presentations, or demonstrations in the development of complex programs.

HPHS INTRO TO COMPUTER SCIENCE

Subject	Grade	Domain	Cluster Statement	Standard Code
Common Core Standard				
Computer Science	9-10	Programming		Describe the characteristics and evaluate the impact of human computer interaction.
Computer Science	$9-10$	Impacts of Computing	Culture	Evaluate the ways computing impacts personal, ethical, social, economic, and cultural practices. Evaluate the ways digital social interactions impact personal, ethical, social, economic, and cultural practices.
Computer Science	$9-10$	Impacts of Computing	Social Interactions	9-10.AP.24

HPHS INTRO TO COMPUTER SCIENCE					
Subject	Grade	Domain	Cluster Statement	Standard Code	Common Core Standard
Computer Science	11-12	Algorithms and Programming	Program Development	11-12.AP. 27	Evaluate key qualities of a program through a process such as a code review.
Computer Science	11-12	Algorithms and Programming	Program Development	11-12.AP. 28	Compare multiple programming languages and discuss how their features make them suitable for solving different types of problems.
Computer Science	11-12	Impacts of Computing	Culture	11-12.IC. 31	Predict how computational innovations that have revolutionized aspects of our culture might evolve.
Computer Science	11-12	Emerging and Future Technologies	Emerging and Future Technologies	11-12.ET.A	Explain that the field of emerging technologies will be evolving and rapidly growing.
Computer Science	11-12	Emerging and Future Technologies	Emerging and Future Technologies	11-12.ET.B	Compare existing and emerging technologies, ideas, and concepts.
Computer Science	11-12	Emerging and Future Technologies	Emerging and Future Technologies	11-12.ET.C	Describe how emerging technologies are influencing current events at a local and global scale.
Computer Science	11-12	Emerging and Future Technologies	Emerging and Future Technologies	11-12.ET.E	Create new or original work by applying emerging technologies.

AP Course	Link to Course Framework
AP Calculus AB	AP Calculus AB Course
AP Calculus BC	AP Calculus BC Course
AP Statistics	AP Statistics Course Framework
AP Computer Science Principles	APCSP Course Framework
AP Computer Science A	AP CS A Course Framework

Subject	Grade	Domain	Cluster Statement	Standard Code	Common Core Standard
Mathematics	HS	The Real Number System	Extend the properties of exponents to r	N.RN. 2 (PR)	Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Mathematics	HS	Quantities*	Reason quantitatively and use units to	N.Q. 1 (PR)	Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.
Mathematics	HS	Quantities*	Reason quantitatively and use units to	N.Q. 2 (PR)	Define appropriate quantities for the purpose of descriptive modeling.
Mathematics	HS	Quantities*	Reason quantitatively and use units to	N.Q. 3 (PR)	Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
Mathematics	HS	The Complex Number System	Perform arithmetic operations with corm	N.CN. 1 (PR)	Know there is a complex number i such that $i^{\wedge} 2=-1$, and every complex number has the form $a+b i$ with a and b real.
Mathematics	HS	The Complex Number System	Perform arithmetic operations with corr	N.CN. 2 (PR)	Use the relation $i^{\wedge} 2=-1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.
Mathematics	HS	The Complex Number System	Use complex numbers in polynomial id	N.CN. 7 (PR)	Solve quadratic equations with real coefficients that have complex solutions.
Mathematics	HS	Vector and Matrix Quantities	Perform operations on vectors.	N.VM. 4 (PR)	(+) Add and subtract vectors.
Mathematics	HS	Vector and Matrix Quantities	Perform operations on vectors.	N.VM. 4 a. (PR)	Add vectors end-to-end, component-wise, and by the parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the magnitudes.
Mathematics	HS	Vector and Matrix Quantities	Perform operations on vectors.	N.VM. 4 b. (PR)	Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum.
Mathematics	HS	Seeing Structure in Expressions	Interpret the structure of expressions.	A.SSE. 1 (PR)	Interpret expressions that represent a quantity in terms of its context. \star
Mathematics	HS	Seeing Structure in Expressions	Interpret the structure of expressions.	A.SSE. 1 a. (PR)	Interpret parts of an expression, such as terms, factors, and coefficients.
Mathematics	HS	Seeing Structure in Expressions	Interpret the structure of expressions.	A.SSE. 1 b. (PR)	Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $\mathrm{P}(1+\mathrm{r}) \mathrm{n}$ as the product of P and a factor not depending on P .
Mathematics	HS	Seeing Structure in Expressions	Interpret the structure of expressions.	A.SSE. 2 (PR)	Use the structure of an expression to identify ways to rewrite it. For example, see $\mathrm{x} 4-\mathrm{y} 4$ as (x 2) $2-(\mathrm{y} 2) 2$, thus recognizing it as a difference of squares that can be factored as $(x 2-y 2)(x 2+y 2)$.
Mathematics	HS	Seeing Structure in Expressions	Write expressions in equivalent forms	A.SSE. 3 (PR)	Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.
Mathematics	HS	Seeing Structure in Expressions	Write expressions in equivalent forms t	A.SSE. 3 a. (PR)	Factor a quadratic expression to reveal the zeros of the function it defines.
Mathematics	HS	Seeing Structure in Expressions	Write expressions in equivalent forms t	A.SSE. 3 b. (PR)	Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.
Mathematics	HS	Seeing Structure in Expressions	Write expressions in equivalent forms t	A.SSE. 3 c. (PR)	Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15 t can be rewritten as (1.151/12)12t $\approx 1.01212 \mathrm{t}$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.
Mathematics	HS	Seeing Structure in Expressions	Write expressions in equivalent forms	A.SSE. 4 (PR)	Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments.
Mathematics	HS	Arithmetic with Polynomials and Ration	Perform arithmetic operations on poly	A.APR. 1 (PR)	Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Mathematics	HS	Arithmetic with Polynomials and Ration	Understand the relationship between z	A.APR. 3 (PR)	Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.
Mathematics	HS	Creating Equations*	Create equations that describe number	A.CED. 1 (PR)	Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
Mathematics	HS	Creating Equations*	Create equations that describe number	A.CED. 2 (PR)	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
Mathematics	HS	Creating Equations*	Create equations that describe number	A.CED. 3 (PR)	Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.
Mathematics	HS	Reasoning with Equations and Inequali	i Understand solving equations as a pro	A.REI. 1 (PR)	Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
Mathematics	HS	Reasoning with Equations and Inequali	i Solve equations and inequalities in on ϵ	A.REI. 3 (PR)	Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
Mathematics	HS	Reasoning with Equations and Inequali	Solve equations and inequalities in one	A.REI. 4 (PR)	Solve quadratic equations in one variable.
Mathematics	HS	Reasoning with Equations and Inequali	Solve systems of equations.	A.REI. 6 (PR)	Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.
Mathematics	HS	Reasoning with Equations and Inequali	i Represent and solve equations and in	A.REI. 10 (PR)	Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).

Mathematics

Mathematics

Reasoning with Equations and Inequali Represent and solve equations and in \in A.REI. 11 (PR)

Reasoning with Equations and Inequali Represent and solve equations and in \in A.REI. 12 (PR)

Interpreting Functions
Interpreting Functions

Interpreting Functions
Interpret functions that arise in applicat F.IF. 4 (PR)

Interpret functions that arise in applicat F.IF. 5 (PR)
Interpret functions that arise in applicat F.IF. 6 (PR)
Analyze functions using different repre؛ F.IF. 7 (PR) Analyze functions using different repre؛ F.IF. 7 a. (PR)

Analyze functions using different repres F.IF. 7 c. (PR)
Analyze functions using different repre؛ F.IF. 7 d. (PR)
Analyze functions using different repre؛ F.IF. 7 e. (PR)
Analyze functions using different repres F.IF. 8 (PR)
Analyze functions using different repres F.IF. 8 a. (PR)

Analyze functions using different repres F.IF. 8 b. (PR)

Analyze functions using different repres F.IF. 9 (PR) Build a function that models a relations F.BF. 1 (PR)

Build a function that models a relations F.BF. 1 b. (PR)

Build a function that models a relations F.BF. 1 c. (PR)

Build new functions from existing functi F.BF. 3 (PR) Construct and compare linear and expc F.LE. 1 (PR)

Construct and compare linear and expc F.LE. 1 a. (PR) Construct and compare linear and expc F.LE. 1 b. (PR)

Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. \star
Graph the solutions to a linear inequality in two variables as a half plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.
Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.
Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. \star Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. \star
Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. \star
Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. \star
Graph linear and quadratic functions and show intercepts, maxima, and minima
Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.
(+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.
Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.
Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $\mathrm{y}=(1.02) \mathrm{t}, \mathrm{y}=(0.97) \mathrm{t}, \mathrm{y}=(1.01) 12 \mathrm{t}, \mathrm{y}=(1.2) \mathrm{t} / 10$, and classify them as representing exponential growth or decay.
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.
Write a function that describes a relationship between two quantities. \star
Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.
${ }^{(+)}$Compose functions. For example, if $\mathrm{T}(\mathrm{y})$ is the temperature in the atmosphere as a function of height, and $\mathrm{h}(\mathrm{t})$ is the height of a weather balloon as a function of time, then $\mathrm{T}(\mathrm{h}(\mathrm{t})$) is the temperature at the location of the weather balloon as a function of time.
Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Distinguish between situations that can be modeled with linear functions and with exponential functions. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.
Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.

Mathematics	HS	Linear and Exponential Models*	Construct and compare linear and expc	F.LE. 1 c. (PR)
Mathematics	HS	Linear and Exponential Models*	Construct and compare linear and expc	F.LE. 2 (PR)
Mathematics	HS	Linear and Exponential Models*	Construct and compare linear and expc	F.LE. 3 (PR)
Mathematics	HS	Linear and Exponential Models*	Interpret expressions for functions in te	F.LE. 5 (PR)
Mathematics	HS	Trigonometric Functions	Extend the domain of trigonometric fun	F.TF. 1 (PR)
Mathematics	HS	Congruence	Experiment with transformations in the	G.CO. 1 (PR)
Mathematics	HS	Congruence	Experiment with transformations in the	G.CO. 2 (PR)
Mathematics	HS	Congruence	Experiment with transformations in the	G.CO. 5 (PR)
Mathematics	HS	Congruence	Understand congruence in terms of rigi	G.CO. 6 (PR)
Mathematics	HS	Congruence	Prove geometric theorems.	G.CO. 9 (PR)
Mathematics	HS	Congruence	Prove geometric theorems.	G.CO. 10 (PR)
Mathematics	HS	Similarity, Right Triangles, and Trigonor	Understand similarity in terms of simila	G.SRT. 2 (PR)
Mathematics	HS	Similarity, Right Triangles, and Trigonor	Prove theorems involving similarity.	G.SRT. 5 (PR)
Mathematics	HS	Similarity, Right Triangles, and Trigonor	Define trigonometric ratios and solve pi	G.SRT. 6 (PR)
Mathematics	HS	Similarity, Right Triangles, and Trigonor	Define trigonometric ratios and solve pi	G.SRT. 8 (PR)
Mathematics	HS	Circles	Understand and apply theorems about	G.C. 2 (PR)
Mathematics	HS	Expressing Geometric Properties with E	Translate between the geometric descr	G.GPE. 1 (PR)
Mathematics	HS	Interpreting Categorical and Quantitativ	Summarize, represent, and interpret de	S.ID. 1 (PR)
Mathematics	HS	Interpreting Categorical and Quantitativ	Summarize, represent, and interpret de	S.ID. 2 (PR)
Mathematics	HS	Interpreting Categorical and Quantitativ	Summarize, represent, and interpret de	S.ID. 3 (PR)
Mathematics	HS	Interpreting Categorical and Quantitativ	Summarize, represent, and interpret de	S.ID. 6 (PR)
Mathematics	HS	Interpreting Categorical and Quantitativ	Summarize, represent, and interpret de	S.ID. 6 a. (PR)
Mathematics	HS	Interpreting Categorical and Quantitativ	Interpret linear models.	S.ID. 7 (PR)
Mathematics	HS	Interpreting Categorical and Quantitativ	Interpret linear models.	S.ID. 9 (PR)
Mathematics	HS	Making Inferences and Justifying Conc	Understand and evaluate random proci	S.IC. 1 (PR)
Mathematics	HS	Making Inferences and Justifying Conc	Make inferences and justify conclusion	S.IC. 3 (PR)

Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.
Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).
Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.
Interpret the parameters in a linear or exponential function in terms of a context.
Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc
Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).
Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another
Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°, base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of al corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.
Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.« Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle,
Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.
Represent data with plots on the real number line (dot plots, histograms, and box plots).
Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.
Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).
Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.
Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear and exponential models. Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.
Distinguish between correlation and causation
Understand statistics as a process for making inferences about population parameters based on a random sample from that population.
Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.

Suject	Grade	Domain	Cluster Statement	Standard	Common Core Standard	Prioriy Standard?	Algebra	Geometry	Geometry Honors	A2	${ }^{\text {A2T }}$	A2TH	trt	PC	PCA	PCH
Mathematics	Hs	The Real I Sumber System	Exend the properities of exponents torational exponents.	N.RN.1	Explain how the definition of the meaning of rational exponents follows from extending the properties of example, we define $51 / 3$ to be the cube root of 5 because we want $(51 / 3) 3=5(1 / 3) 3$ to hold, so $(51 / 3) 3$ must equal 5.	No	\square									
Mathematics	Hs	The Real I Number Sysiem	Exend the properies of exponents to rational exponents.	N.RN.2 (PR)	Rewwite expressions involing radicals and rational exponents s sing the properies of exponents.	Prionty	\square	\square	\square	∇	∇	∇	\square	\square	\square	\square
Mathematics	нs	The Real Number System	Use proeerites of rational and irational numbers.	N.RN. 3	Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational	No	\square	\square	\square	\square	\bullet	\checkmark	\square	\square	\square	\square
Mat	Hs	Quantite	Reason	N. 0.1 (PR)	Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and	Prioty	∇	\checkmark	\square							
Mathematics	Hs	Quantities*	Reason quantutively and use units os osve problems.	N.02. (PR)	Define approppriele quantities or the purpose ofdessifitive modeling.	Priority	\square									
Mathematics	нs	Quantities*	Reason quantulativy and use units to sove problems.	N. 2.3 (PR)		Prority	\checkmark	\square								
Mathematics	нs	The Complex Number S	Perform arthmeicio opeations with complex numbers	N.CN. 1 (P		Priofly	\square	\square	\square	\bullet	\bullet	\square	\square	\square	\square	\square
Mathematics	нs	The Complex Number System	Perform arithmeicic operaions with complex xumbers.	N.CN.2 (PR)		Priotiy	\square	\square	\square	\square	\bullet	∇	\square	\square	\square	\square
Mantematics	нs	The Complex Number System	Pertom arithmetic operation with complex numbers.	n..n. 3	(t) Find the coniugate of ca complex number, sse coniugates tof find moduliand quotiens of complex	No	\square									
Matematics	Hs	The Complex Number System	Represent complex numbers and their operations on the complex plane.	N.CN.4	(+) Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number.	No	\square									
atics	Hs	The Con	Represent complex numbers and their operations on the complex plane.	n.cn. 5	$(+)$ Represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex plane; use properties of this representation for computation. For example, $(-1+3 i)^{\wedge} 3=8$ because $(-1+3 i)$ has modulus 2 and argument 120°.	No	\square									
Mathematics	Hs	The Complox Number System	Represesen complex numbers and their operations on the complex lanee	N.CN	${ }^{+}+$Calculate the distance between numbers in the complex plane as the modulus of the difference, and he midpoint of a segment as the average of the numbers at its endpoints.	No	\square									
Mathematics	Hs	The Complex Number Ssistem	Use coupplex numbers in poobynomial identites and	N.CN.7 (R)	Sove quadraic equations with real coefficienst that have complex solutions.	Prioity	\square									
Matematics	нs	The Complex Number Systern	Ue ceamplex xumbers in pooyromial identities and	N.cN. 8	Identites tothe complex numbers. For example, rewite $\mathrm{x}^{\prime 2} 2+4 \mathrm{as}(x+2 i)(x-2)$).	No	\square	\bullet	\checkmark	\bullet						
Mathematics	Hs	The Complex Number System	Use complex numbers in pooynomial identities and	n.cn.9	(+) Know the fundamenal Theorem OAA Agebra show that it stue for uuaratic polyno	No	\square	\bullet								
Mathematics	нs	Vector and Matrix Ouantities	Represent and model witivector cuantites.	n.vm. 1	(+) Recognize vector quantities as having both magnitude and direction. Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes (e.g., v, \|v	, \|v\| . v. v .	No	\square	\bullet	\square						
Mathematics	Hs	Vector and Matix Quantities	Represent and model with vector cuanties.	n.vM2 2		No	\square									
Mathematics	Hs	Vectorand Matix Ouantities	Represent and model with vector cuanties.	n.vm 3	(+) Sode problems involving velocity and other quantities that can be reperesented by vectors.	No	Q	Q	\square	Q	Q	Q	Q	Q	®	0
Mathematics	Hs	Vector and Matix Ouantities	Pertom operations on vectors.	N.VM4(PR)	()Add and subtract vectors.	Priofly	\square	\square	\square		\square			\square		
Mahematics	Hs	Vector and Matix Ouantites	mom operations on		Add vectors end-to-end, component-wise, and by the parallelogram rule. Understand that the magnitude Add vectors end a sum of two vectors is typically not the sum of the magnitudes.	arity	\square	\square	\square	\square	\square	\square	\bullet	\bullet	\square	\bullet
Mathematics	Hs	Vector and Matix Quantities	Peftom operations on vectors.		Given two vectors in magitude and direction form, determine the magnitude and direcioo of their sum.	Priofty	\square	\square	\square	\square	\square	\square	\bullet	\bullet	\checkmark	\square
	нs	Vector and Matix Cuantites	Perfom operations on vectors.		Understand vector subtraction $v-w$ as $v+(-w)$, where -w is the additive inverse of w, with the same magnitude as w and pointing in the opposite direction. Represent vector subtraction graphically	No	\square									
Mathematics	HS	Vectorand Matix Wuantities	Pertom operations on vectors.	n.vM. 5	() Mutitipy v vector by a scalar.	No	\square									
Manematics	нs	Vector and Matrix Quantities	Peffom operations on vectors.	n.v.sa.	Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; erform scalar multiplication component-wise, e.g., as $c(v x, v y)=(c v x, c v y)$.	No	\square	\bullet	\bullet							
Mathematics	Hs	Vectorand Matix Quantities	Perform operations onvectors.	n.vm.5.		No	\square									
Mathematics	Hs	Vectorand Matix Ouantities	Perform operations on matrices and use matrices in applications.	n.vM. 6	${ }^{(+)}$Use matrices to represent and manipulate data, e.g., to represent payoffs or incidence relationships in a network.	No	\square									
Mathematics	нs	Vector and Matix Quantites	Perform operations on matrices and use matrices in pplications	n.мn. 7	(+) Multiply matrices by scalars to produce new matrices, e.g., as when all of the payoffs in a game are doubled.	No	\square	\square	\square	\square	\square	\bullet	\square	\square	\square	\square
Mathemaics	Hs	Vectorand Matix Cuantities		n.vm. 8	(+ Add, suburact, and mulupipy matices of appropiaite dimensions.	No	\square	\square	\square	\square	\square	\bullet	\square	\square	\square	\square
Mathematics	Hs	Vector and Matix Cuantities	Perform operations on matrices and use matrices in applications	n.vm. 9		No	\square	\square	\square	\square	\square	\bullet	\square	\square	\square	\square
Mathematics	Hs	Vector and Matix Ouantities	Perform operations on matrices and use matrices in applications.	n.Mm. 10	$(+)$ Understand that the zero and identity matrices play a role in matrix addition and multiplication similar the matrix has a multiplicative inverse. square matrix is nonzero if and only if	No	\square									
Mathematics	Hs	Vector and Matix Cuantities	Perform operations on matrices and use matrices in pplications.	N.Vm. 11		No	\square									
Mathematics	Hs	Vector and Matix Ouantities	Perform operations on matrices and use matrices in applications	N.VM. 12	(t) Work with 2×2 matrices as a tanstomations of the plane, and interret the absolut value of the	No	\square									
star symbol (\star). The star symbol sometimes appears on the heading for a group of standards; in that case, it should be understood to apply to all standards in that group.																
intended for all students.																

Sujject	Grade	Domain	Cluster Statement	Standard Code	Common Core Standard	Priority Standard Stan	Algebral	Geometry	Geometry Honors	A2	A2T	${ }^{\text {A2TH }}$	trt	PC	PCA	PCH
Mathemaics	Hs	Seeing Structue in Expressions	Interpet the structure of expressions.	A.SSE. 1 (PR)		Priofity	∇	\square								
Mathemaics	HS	Seeing Structure in Expressions	Interet the structur of expressions.	A.SSE.1a. (PR)	Interpret parts of an expression, such as terms, factors, and coefficients.	Priofity	\bullet	\square	\square	\bullet	\bullet	\bullet	\square	\square	\square	\square
Mathematics	нs	Seeing Stucture in Expessions	Interret the structure of expressions.	A.SSE.1b. (PR)	Interpret complicated expressions by viewing one or more of their as a single entity. For mple, interpret $P(1+r)$ n as the product of P and a factor not depending on P	Priofity	\square									
Mathemaics	нs	Seeing Structue in Expressions	Interpet the structure of expressions.	A.SSE. 2 (PR)	Use the structure of an expression to identify ways to rewite it. For example, see $x 4-y 4$ as $(x 2) 2-(y 2) 2$, thus recognizing it as a difference of squares that can be factored as ($\mathrm{x} 2-\mathrm{y} 2)(\mathrm{x} 2+\mathrm{y} 2)$	Priofity	∇	\square	\square	\square	∇	∇	\square	\square	\square	\square
Mathemai	HS	Seeing Structure in Expressions	Write expressions in equivalent toms to sove problems.	A.SSE.3 (PR)	Choose and produce an equivalent form of an expression to reveal expression. \star rties of the quantity represented by the	Priofity	∇	\square	\square	\square	∇	∇	\square	\square	\square	\square
Mathematics	HS	Seeing Structure in Expressions	Write expressions in equivalent torms to solve problems.	A.SSE.3a. (PR)	Factor a quadratic expression to reveal the zeros of the function it defines.	Priority	\square	\square	\square	\square	\bullet	∇	\square	\square	\square	\square
Mathemaics	HS	Seeing Structue in Expressions	Wite expressions in equivalent torms to solve problems.	A.SSE. ${ }^{\text {b }}$ (PR)	Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines	Priority	\square	\square	\square	\bullet	\bullet	\square	\square	\square	\square	\square
Mathemaics	Hs	Seeing Structure in Expressions	Wirte expressions in equivalent torms to solve problems.	A.SSE.3c. (PR)	Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15 tan can be rewritten as $(1.151121212 \mathrm{t}=1.01212$ t to reveal the approximate equivalent monthly interest rate if the annual rate is 15%	Priority	\square	\square	\square	∇	∇	∇	\square	∇	\square	\square
Mathematics	Hs	Seeing Structue in Expressions	Wirte expressions in equivalent torms to solve problems.	A.SSE.4(PR)	Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments. \star	Priofity	\square	\square	\square	∇	∇	\square	∇	∇	\square	∇
Mathematics	нs	Arithmetic with Polynomials and Rational Expressions	Peftom arithmetic operations on polynomials.	A.APR. 1 (PR)	Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition subtraction, and multiplication; add, subtract, and multiply polynomials.	Priority	∇	\square	\square	∇	∇	∇	\square	\square	\square	\square
Mathematics	Hs	Arithmetic with Polynomials and Rational Expressions	Understand the relationship between zeros and factors of polynomials.	A.APR. 2	Know and apply the Remainder Theorem: For a polynomial $p(x)$ 0 anumber a, $=0$ if and only if $(\mathrm{x}-\mathrm{a})$ is a factor of $\mathrm{p}(\mathrm{x}$.	No	\square	\square	\square	\square	\square	∇	\square	∇	\square	\square
Mathematics	HS	Arithmetic with Polynomials and Rational Expressions	Understand the relationship between zeros and factors of polynomials.	A.APR. 3 (PR)	Identify zeros of polynomials when suitable factorizations are available, and use the zeros to cons function defined by the polynomial.	Priofity	∇	\square	\square	\square	∇	∇	\square	∇	∇	∇
Mathematics	Hs	Arithmetic with Polynomials and Rational Expressions	Use polynomia identities to solve problems.	A.APR. 4	Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity $(x 2+y 2) 2=(x 2$ $-y 2) 2+(2 x y) 2$ can be used to generate Pythagorean triples. $-y 2) 2+(2 x y) 2$ can be used to generate Pythagorean triples.	No	\square									
Mathematics	нs	Arithmetic with Polynomials and Rational Expressions	Use polynomial identitie to solve problems.	A.APR. 5	any numbers, with coeficicients delememined for example by Pascal -induction or by a combinatotiaia argument.	No	\square									
Mathematics	Hs	Arithmetic with Polynomials and Rational Expressions	Rewrite rational expressions.	A.APR. 6	Rewite simple rational expressions in different forms: witte a(x)/b 	No	\square	\square	\square	\square	\square	∇	\square	∇	∇	\square
Mathemaics	HS	Arithmetic with Polynomials and Rational Expressions	Rewite rationa expressions.	AAPR. 7	(+) Understand that rational expressions to the rational numbers, closed under addition, subtraction, muttipication, and division by anonzero rational es. subtract, muttiply, and divide rational expressions.	No	\square									
Mathemaics	нs	Creating Equations*	Create equations that describe numbers or reationships	A.CED. 1 (PR)	Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadrat functions, and simple rational and exponential functions	Priofity	∇	\square	\square	\square	∇	∇	\square	\square	\square	\square
Mathematics	Hs	Creating Equations*	Create equations that describe numbers or reationships	A.CED. 2 (PR)	Create equations in two or more variables to represen relationships between quantities, graph equations on coordinate axes with labels and scales.	Priority	∇	\square	\square	∇	∇	\square	\square	\square	\square	\square
Mathemaics	Hs	Creating Equaions*	Create equations that describe numbers or reationstips	A.CED. 3 (PR)	 inequalities describing nutritional and cost constraints on toods.	Priority	∇	\square	\square	∇	∇	∇	\square	\square	∇	\square
Mathemaics	Hs	Creating Equations*	Create equations that describe numbers or reationships	A.CED. 4	Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $V=I R$ to highlight resistance R.	No	∇	\square								
Mathemaics	HS	Reasoning with Equations and Ineualities	Understand solving equations as a process of reasoning and explain the reasoning.	A.RE1. 1 (PR)	Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the viable argument to justify a solution method.	Priority	∇	\square								
Mathematics	HS	Reasoning with Equations and Ineualities	Understand solving equations as a process of reasoning and explain the reasoning.	A.RE. 2	Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.	No	\square	\square	\square	\bullet	\bullet	\bullet	\square	\square	\square	\square
Mathematics	нs	Reasoning with Equations and Inequalities	Solve equations and inequalities in one variale.	A.REI.3 (PR)	Solve linear equation sand inequalities in one variale, including	Prioity	\checkmark	\square								
Mathematics	Hs	Reasoning with Equations and Inequalities	Solve equations and ineuualites in one variable.	A.RE1.4(PR)	Solve quadratic equations in one variable.	Priority	\square	\square	\square	\square	∇	\square	\square	\square	\square	\square
Mathemaics	HS	Reasoning with Equations and Ineualities	Solve equations and ineuualites in one variable.	A.REI.4. ${ }^{\text {a }}$	Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{\wedge} 2=q$ that has the same solutions. Derive the quadratic formula from this form.	No	\square	\square	\square	\square	∇	∇	\square	\square	\square	\square
Mathematics	Hs	Reasoning with Equations and Inequalities	Solve equations and inequalities in one variable.	A.REI.4.	Solve quadratic equations byinspection (e.g., for $\times 1 \times 2=4$), taking squarer roots , ompleting the suare Souare rois, completing the suarate, the quatrataic ormulan 	No	\square	\square	\square	\square	∇	∇	\square	\square	\square	\square
Mathemaics	HS	Reasoning with Equations and Ineualities	Solve systems of equations.	A.RE. 5	Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a of the other produces a system with the same solutions.	No	\square									
Mathemaics	HS	Reasoning with Equations and Inequalities	Solve systems of equations.	A.RE1.6 (PR)	Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.	Priority	\checkmark	\square	\square	\square	∇	\bullet	\square	\square	\square	\square
Mathematics	HS	Reasoning with Equations and Inequalities	Solve systems of equations.	A.RE1.7	Solve a simple system consisting of a linear equation and quadraic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y=-$ x and the circle $x 2+y 2=3$.	No	\square									
Mathemaics	HS	Reasoning with Equations and Ineualities	Solve systems of equations.	A.RE. 8	(+) Represent a system of linear equations as a single matrix equation in a vector variable.	No	\square	\square	\square	\square	\square	\bullet	\square	\square	\square	\square
Mathematics	HS	Reasoning with Equations and Inequalities	systems of equations.	A.REI 9	+) Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using technology for matrices of dimension 3×3 or greater)	No	\square	\square	\square	\square	\square	∇	\square	\square	\square	\square
Mathematics	Hs	Reasoning with Equations and Inequalities	Represent and solve equations and inequalities graphically.	A.RE. 10 (PR)	Understand that the graph of an equation in two variables is the set oll its solutions plotted in the coordinate plane, often forming a curve (which could be a line).	Priofity	\square									

Subject	Grade	Domain	Cluster Statement	Standard Coded	mmmon Core Standard	$\begin{aligned} & \text { Priority } \\ & \text { Standard } \\ & ? \end{aligned}$	Algebral	Geometry	Geometry Honors	A2	${ }^{2} 2 \mathrm{~T}$	A2TH	TRT	PC	PCA	PCH
Mathematics	нs	Reasoning with Equations and Ineualities	Represent and solve equations and inequalities graphically.	A.RE1.11 (PR)	Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ logarithmic functions. \star	Priority	∇	\square	\square	∇	∇	∇	\square	\square	\square	\square
Mathematics	Hs	Reasoning with Equations and Ineualities	Represent and solve equations and inequalities graphically	A.RE1.12 (PR)	Graph the solutions toa a inear inequality in two variables as a half plane eexcluding the bounday in the case of strict inequality) variables as the intersection of the corresponding half-planes	Priority	\square	\square	\square	\square	∇	∇	\square	\square	\square	\square
*Modeling is best interpreted not as a collection of isolated topics but in relation to other standards. Making mathematical models is a Standard for Mathematical Practice and specific modeling standards appear throughout the high school standards indicated by a star symbol (\star). The star symbol sometimes appears on the heading for a group of standards; in that case, it should be understood to apply to all standards in that group.																
$(+)$ The high school standards specify the mathematics that all students should study in order to be college and career ready. Additional mathematics that students should learn in order to take advanced courses such as calculus, advanced statistics, or discrete mathematics is indicated by (+). All standards without a (+) symbol should be in the common mathematics curriculum for all college and career ready students. Standards without a $(+)$ symbol may also appear in courses intended for all students.																

Subject	Grade	Domain	Cluster Statement	Standard Code	Common Core Standard	Priority Standard?	Algebral	Geometry	Geometry		${ }^{\text {A2 }}$	A2TH	TRT	PC	PCA	PCH
Mathematics	Hs	Interpreting Functions	Understand the concept of a function and use function notation.	F.F.1. (PR)	Understand that a function from one set (called the domain) to another set (called the ange) assigns to each element of the domain exactly one element of the range. If f is corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.	Priority	∇	\square								
Mathematics	нs	Interpreting Functions	Understand the concept of a function and use function notation.	F.IF.2. (PR)	Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.	Priority	∇	\square								
Mathematics	Hs	Interpreting Functions	Understand the concept of a function and use function notation.	F.IF. 3	Recognize that sequences are functions, sometimes defined recursively, whose omain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0)=f(1)=1, f(n+1)=f(n)+f(n-1)$ for $n^{3} 1$.	No	\square									
Mathemaics	нs	Interpreting Functions	Interpret functions that arise in applications in terms of the context	F.IF.4 (PR)	 	Priority	∇	\square	\square	∇	∇	∇	\square	\square	\square	\square
Mathematics	нS	Interpreting Functions	Interpret functions that arise in applications in terms of the context	F.I.F.5 (PR)	Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person- hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. \star	Priority	∇	\square	\square	∇	∇	∇	\square	\square	\square	\square
Mathematics	HS	Interpreting Functions	interpret functions that arise in applications in terms of the context	F.IF.6. (PR)	Calculate and interpret the average rate of change of a function (presented symbolicall graph.	Priority	∇	\square	\square	∇	∇	\square	\square	\square	\square	\square
Mathematics	Hs	Interpreting Functions	Analyze functions using different representations.	F.IF.7.7 (PR)	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. \star	Priority	\square									
Mathematics	нs	Interpetitig Functions	Analyze functions using different representations.	F.IF.7. a. (PR)	Graph linear and quadraic functions and show intercepts, maxima, and minima.	Priority	\square									
Mathematics	нs	Interpreting Functions	Analyze functions using different representations.	F.1.7.7.	Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.	No	\square									
Mathematics	HS	Interpreting Functions	Analyze functions using different representations.	F.IF.7. (PR)	Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.	Priority	\square	\square	\square	∇	∇	∇	\square	\square	\square	\square
Mathematics	Hs	Interpreting Functions	Analyze functions using different representations.	F.IF.7. (PR)	${ }^{(+)}$Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.	Priority	\square	\square	\square	\square	\square	\square	∇	∇	\square	\square
Mathematics	HS	Interpreting Functions	Analyze functions using different representations.	F.IF.7e. (PR)	Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.	Priority	\square	\square	\square	∇	∇	\square	\square	\square	\square	\square
Mathemaics	HS	Interpreting Functions	Analyze functions using different representations.	F.I.E.8 (PR)	Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.	Priority	∇	\square	\square	∇	\bullet	∇	\square	\square	\square	\square
Mathemaics	Hs	Interpreting Functions	Analyze functions using different representations.	F.I. 8 a . (PR)	Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.	Priority	∇	\square	\square	∇	∇	∇	\square	\square	\square	\square
Mathematics	Hs	Interpreting Functions	Analyze functions using different representations.	F.1.f.8 b. (PR)	Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y=(1.02)$ t. $y=(0.97)$ tit, y $=(1.01) 12 t, y=(1.2)$ tit1, and classify them as representing exponential growth or decay.	Priority	∇	\square	\square	∇	∇	\square	\square	\square	\square	\square
Mathematics	Hs	Interpreting Functions	Analyze functions using different representations.	F.IF.9 (PR)	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given na has the larger maximum.	Priority	\square	\square	\square	∇	∇	\square	\square	\square	\square	\square
Mathematics	Hs	Builing Functions	Build a tunction that models a relationship between two uuantites.	F.B.1. 1 (PR)	Write a function that describes a relationship between two quanties. .	Priority	∇	\square	\square	∇	∇	\square	\square	\square	\square	\square
Mathematics	нs	Builing Functions	Build a function that models a relationship between two quantities.	F.BF.1a.	Determine an explicit expression, a recursive process, or steps for calculation from a context.	No	\square									
Mathematics	Hs	Building Functions	Build a function that models a relationship between two quantities.	F.BF.1b. (PR)	Combine standard function types using arithmetic operations. For example, build a unction that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model	Priority	∇	\square	\square	∇	∇	∇	\square	\square	\square	\square
Mathematics	Hs	Builiding Functions	Build a function that models a relationship between two quantities.	F.BF.19. (PR)	${ }^{(+)}$Compose functions. For example, if $T(y)$ is the temperature in the atmosphere as a function of height, and $h(t)$ is the height of a weather balloon as a function of time, then $T(h(t)$ is the temperature at the location of the weather balloon as a function of time.		\square	\square	\square	\square	\square	\square	∇	\square	\square	\square
Mathematics	нs	Building Functions	Build a function that models a relationship between two quantities.	F.BF. 2	Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. \star	No	\square	∇	∇	∇						
Mathematics	нs	Building Functions	Build new functions from existing functions.	F.BF.3 (PR)	Idenify the effect on the oraph of replacing $f(x)$ b $f(f)+k, k(f) f(f(k)$, and $f(x+k)$ for spectic values of k boot positive and negate) $\begin{aligned} & \text { Experiment with cases and illustrate an explanation of the effects on the graph using }\end{aligned}$ technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.	Priority	∇	\square	\square	∇	∇	∇	\square	\square	\square	\square
Mathematics	HS	Builing Functions	Build new functions from exising functions.	F.B. 4	Find inverse functions.	No	\square	\square	\square	\square	∇	\checkmark	\square	∇	∇	∇
Mathematics	нs	Building Functions	Build new functions from existing functions.	F.8F.4a.	Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x)=2 x 3$ or $f(x)=(x+1) /(x-1)$ for x $\neq 1$.	No	\square	\square	\square	∇	∇	\square	\square	∇	∇	∇
Mathematics	HS	Builing Functions	Build new functions from existing functions.	F.BF.4b.	(+) Verity by composition that one function is the inverse of another.	No	\square	\square	\square	\square	∇	∇	\square	∇	∇	∇
Mathemaics	HS	Building Functions	Build new functions from existing functions.	F.B.4. 4.	$(+)$ Read values of an inverse function from a graph or a table, given that the function has an inverse.	No	\square	\square	\square	\square	\square	∇	\square	∇	\square	\checkmark
Mathematics	HS	Building Functions	Build new functions from existing functions.	F.B.4.4.	(+) Produce an invertible function from a non-invertible function by restricting the domain.	No	\square	\square	\square	\square	\square	∇	\square	∇	\bullet	\checkmark
Mathematics	HS	Builiding Functions	Build new functions from existing functions.	F.BF	(+) Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.	No	\square	\square	\square	\square	\square	∇	\square	∇	\square	\checkmark
Mathematics	нs	Linear and Exponential Models*	Construct and compare linear and exponential models and solve problems.	F.LE.1 (PR)	Distinguish between situations that can be modeled with linear functions and with exponential functions.	Priority	\square	\square	\square	∇	∇	\square	\square	\square	\square	\square
Mathemaics	HS	Linear and Exponential Models*	Construct and compare linear and exponential models and solve problems.	F.LE.1a.(PR)	Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.	Priority	∇	\square								
Mathematics	HS	Linear and Exponential Models*	Construct and compare linear and exponential models and solve problems.	F.LE.1b.(PR)	Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.	Priority	∇	\square								
Mathemaics	Hs	Linear and Exponential Models*	Construct and compare linear and exponential models and solve problems.	F.LE.1c.(PR)	Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.	Priority	∇	\square								
Mathematics	Hs	Linear and Exponential Models	Construct and compare linear and exponential models and solve problems	F.LE. 2 (PR)	Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table)	Prioity	∇	\square								
Mathematics	нs	Linear and Exponential Models	Construct and compare linear and exponential models and solve problems	F.LE. 3 (PR)	Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function	Prioity	∇	\square								
Mathematics	нs	Linear and Exponential Models*	Construct and compare linear and exponential models and solve problems	F.LE. 4	For exponential models, express as a logarithm the solution to $a b c t=d$ where a, c and d are numbers and the base b is 2,10 , or e; evaluate the logarithm using technology.	No	\square	\square	\square	\square	∇	\square	∇	∇	∇	\square
Mathematics	Hs	Linear and Exponential Models*	Interpret expressions for functions in terms of the situation they model.	F.LE.5 (PR)		Priority	∇	\square								
Mathematics	HS	Trigonometric Functions	Extend the domain of trigonometric functions using the unit circle.	F.TF.1 (PR)	Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.	Priority	\square	\square	\square	∇	∇	∇	\square	\square	\square	\square

Subject	Grade	Domain	Cluster Statement	Standard code	Common Core Standard	Priority Standard	Algebral	Geometry	Geometry		A2T	A2TH	trt	PC	PCA	PCH
Mathematics	Hs	Trigonometic Functions	Extend the domain of trigonometric unctions using the unit circle.	F.TF. 2	Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpr	No	\square									
Mathematics	Hs	Trigonometric Functions	Extend the domain of trigonometric unctions using the unit circle.	F.TF. 3	${ }^{(+)}$Use special triangles to determine geometrically the values of sine, cosine, tangent for $p / 3, p / 4$ and $p / 6$, and use the unit tircle to express the values of sine, cosines, and tangent tor $x, p+x$, and $2 p-x$ in terms of their values for x, where x is any real number.	No	\square									
Mathematics	HS	Trigonometric Functions	Extend the domain of trigonometric functions using the unit circle.	F.te. 4	$(+)$ Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.	No	\square									
Mathematics	HS	Trigonometric Functions	Model periodic phenomena with rigonometric functions	F.tF. 5	Choose trigonometric functions to model periodic phenomena with specified amplitude, requency, and midline. \star	No	\square									
Mathematics	HS	Trigonometric Functions	Model periodic phenomena with trigonometric functions.	F.TF. 6	${ }^{(+)}$Understand that restricting a trigonometric function to a domain on which it is always increasing or always decreasing allows its inverse to be constructed.	No	\square									
Mathematics	HS	Trigonometric Functions	Model periodic phenomena with trigonometric functions.	F.tF. 7	$(+)$ Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions using technology, and interpret them in terms of the context. \star	No	\square									
Mathematics	HS	Trigonometic Functions	Prove and apply trigonometric identities.	F.TF. 8	Prove the Pythagorean identity $\sin 2(\theta)+\cos 2(\theta)=1$ and use it to find $\sin (\theta), \cos (\theta)$, or $\tan (\theta)$ given $\sin (\theta), \cos (\theta)$, or $\tan (\theta)$ and the quadrant of the angle.	No	\square									
Mathematics	HS	Trigonometic Functions	Prove and apply trigonometric identities.	F.TF.9	$(+)$ Prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems.	No	\square									
Modeling is best interpreted not as a collection of isolated topics but in relation to other standards. Making mathematical models is a Standard for Mathematical Practice, and specific modeling standards appear throughout the high school standards indicated by a star symbol (\star). The star symbol sometimes appears on the heading for a group of standards; in that case, it should be understood to apply to all standards in that group.																
${ }^{(+)}$The high school standards specify the mathematics that all students should study in order to be college and career ready. Additional mathematics that students should learn in order to take advanced courses such as calculus, advanced statistics, or discrete mathematics is indicated by (+). All standards without a (+) symbol should be in the common mathematics curriculum for all college and career ready students. Standards without a (+) symbol may also appear in courses intended for all students.																

Subject	Grade	Domain	Cluster Statement	Standard Code	Common Core Standard	Priority Standard	Algebral	Geometry	Geometry		${ }^{\text {A2 }}$	A2TH	tRT	PC	PCA	PCH
Mathematics	нs	Congruence	Experiment with transformations in the plane.	G.CO. 1 (PR)	Know precise definitions of angle, circle, perpendicular line, parallel line, and line egment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc	Prioity	\square	∇	\square							
Mathematics	HS	Congruence	Experiment with transtormations in the plane.	G.CO. 2 (PR)	 	Priority	\square	∇	\square							
Mathematics	HS	Congruence	Experiment with transtormations in the plane.	¢.co. 3	Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.	No	\square									
Mathemaics	HS	Congruence	Experiment with transtormations in the plane.	G.co. 4	Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.	No	\square									
Mathematics	Hs	Congruence	Experiment with transtormations in the plane.	G.Co. 5 (PR)	Given a geometric figure and a rotation, reflection, or translation, draw the transformed gure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.	Priority	\square	∇	\square							
Mathemaics	Hs	Congruence	Understand congruence in terms of figid motions.	G.co.6 (PR)	Use geometric descripitions of rigid motions to transtom figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.	Priority	\square									
Mathematics	Hs	Congruence	Understand congruence in terms of igid motions.	6.co. 7	Use the definition of congruence in terms of rigid motions to show that two triangles are ent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.	No	\square	∇	\square							
Mathemaics	нs	Congruence	Understand congruence in terms of figid motions.	6.co.8	Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.	No	\square	∇	\square							
Mathematics	Hs	Congruence	Prove geometric theorems.	G.Co.9 (PR)	Prove theorems about lines and angles. Theorems include: verical angles are congruent; when a transversal crosses parallel lines, alternate interio angles are congruent and corresponding angles are congruent: points on a perpendicular bisector of a line segment are exactly those equidistant trom the segment's endpoints.	Priofity	\square	∇	\square							
Mathematics	Hs	Congruence	Prove geometric theorems.	G.CO. 10 (PR)	Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.	Priority	\square	∇	∇	\square						
Mathematics	HS	Congruence	Prove geometric theorems.	G.co.11	Prove theorems about parallelograms. Theorems include: opposite sides are congruent, ngruent, the diagonals of a parallelogram bise conversely, rectangles are parallelograms with congruent diagonals.	No	\square	∇	∇	\square						
Mathemaics	Hs	Congruence	Make geometric constructions.	G.Co.12	Make fommal geomentic constructions with varaity of tools and methodsis compass and. and constructing a line parallel to a given line through a point not on the line.	No	\square									
Mathemaics	HS	Congruence	Make geometric constructions.	G.co.13	Construct an equilateral triangle, a suuare, and a regular hexagon inscribed in a circle.	No	\square									
Mathematios	Hs	Similarity, Right Triangles, and Trigonometry	Understand similarity in terms of similarity transformations.	G.SRT. 1	Verify experimentally the properies ofdilations given by a center and a scale factor:	No	\square									
Mathematics	нs	Similarity, Right Triangles, and Trigonometry	Understand similarity in terms of similarity transformations.	G.SRT.1a.	A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.	No	\square	∇	\square							
Mathematics	Hs	Similarity, Right Triangles, and Trigonometry	Understand similarity in terms of similarity transformations.	G.SRT11 b .	The diation of aline segment is longer or shoreter in the ratio given by the scale factor.	No	\square	∇	\square							
Mathematics	нs	Similarity, Right Triangles, and Trigonometry	Understand similarity in terms of similarity transformations.	G.SRT.2 (PR)	Given two figures, use the definition of similarity in temms of similarity transformations to proportionality of all coressonding pairs of sides.	Priority	\square	∇	∇	\square						
Mathematics	HS	Similiarity, Right Triangles, and Trigonometry	Understand similarity in terms of similarity transformations.	G.SRT. 3	Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar	No	\square	\triangleright	\square							
Mathematics	HS	$\begin{aligned} & \text { Similianty, Right } \\ & \text { STriangles, and } \\ & \text { Trigonometry } \end{aligned}$	Prove theorems involing similarity.	G.SRT.4	Pre theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.	No	\square	∇	\square							
Mathematics	Hs	Similarity, Right Triangles, and Trigonometry	Prove theorems involing similarity.	G.SRT.5 (PR)	Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.	Priority	\square	\bullet	\square							
Mathematics	Hs	Similarity, Right Triangles, and Trigonometry	Define trigonometric ratios and solve problems involving right triangles.	G.SRT.6 (PR)	Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.	Priority	\square	∇	\square							
Mathematics	HS	$\begin{aligned} & \text { Simiuiarity, Right } \begin{array}{l} \text { Triangles and } \\ \text { Tigonometry } \end{array} \end{aligned}$	Define trigonometric ratios and solve problems involving right triangles.	G.SRT.7	Explain and use the relationstip between the sine and cosine of complementary angles.	No	\square	∇	\square	\square	\square	∇	\square	\square	\square	\square
Mathematics	Hs	Similarity, Right Trigonometry Trigonometry	Define trigonometric ratios and solve problems involving right triangles.	G.SRT.8(PR)	Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems."	Priority	\square	∇	\bullet	\square	\square	∇	\bullet	\square	\square	\square
Mathematics	HS	Similarity, Right Triangles. and Trigonometry	Apply trigonometry to general triangles.	G.SRT.9	(+) Derive the fomula $\mathrm{A}=1 / 2 \mathrm{ab}$ sin(C) for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.	No	\square	\square	\square	\square	\square	∇	\square	\square	\square	\square
Mathematics	Hs	$\begin{aligned} & \text { Similarity, Right } \\ & \text { Tmianges, a and } \\ & \text { Trigonometry } \end{aligned}$	Apply trigonometry to general triangles.	G.SRT.10	(+ Prove the Laws of Sines and Cosines and use them to solve problems.	No	\square	\checkmark	\square	\square	\square	∇	∇	∇	∇	∇
Mathematics	HS	Similanity, Right Triangles, and Trigonometry	Apply trigonometry to general triangles.	G.SRT. 11	(+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).	No	\square	\square	\bullet	\square	\square	∇	\bullet	∇	\square	\square
Mathematics	HS	Circles	Understand and apply theorems about cirices.	G.c. 1	Prove that all circles are similar.	No	\square									
Mathematics	HS	Circles	Understand and apply theorems about ciricles.	G.C.2 (PR)	Idenitiy and describe relationstips among inscribed angles, radii, and chords, Include on a diameter reer ighnt angles, the radius of of circicle is sperienendiculuar to to the tangent where the radius intersects the circle.	Priority	\square	∇	∇	\square						
Mathemaics	HS	Circles	Understand and apply theorems about tircles.	G.c. 3	Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.	No	\square									
Mathemaics	HS	Circles	Understand and apply theorems about cirices.	G.C.4	${ }^{(+)}$Construct a tangent line from a point toutide a given circle to the circle.	No	\square									
Mathematics	HS	Circles	Find arc lengths and areas of sectors of iricles.	G.c. 5	Derive using similarity the fact that the length of the arc intercepted by an angle is , define the radian measure of proportionality; derive the formula for the area of a sector.	No	\square	∇	\bullet	\square						
Mathematics	HS	Expressing Geometric Properties with Equations	Translate between the geometric description and the equation for a conic section.	G.GPE. 1 (PR)	Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.	Priority	\square	∇	\square	\square	\square	∇	\square	\square	\square	\square
Mathematics	Hs	Expressing Geometric erties with Equations	Translate between the geometric description and the quation for a conic section.	G.GPE. 2	Deive the equation of parabola given a focus and directrix.	No	\square	\square	\square	\square	\square	∇	\square	\square	\square	\square
Mathematics	Hs	Expressing Geometric Equations	Translate between the geometric description and the equation for a conic section.	G.6PE. 3	(+)Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant.	No	\square	\square	\square	\square	\square	∇	\square	\square	\square	\square

Sujject	Grade	Domain	Cluster Statement	Standard Code	Common Core Standard	Priority Standard	Algebral	Geometry	Geometry		A2T	A2TH	TRT	PC	PCA	PCH
Mathemaics	HS	Expressing Geometric roperties with Equations	Use coordinates to prove simple geometric theorems algebraically.	G.GPE. 4	Use coordiates to prove simple geometric theorems algebraically. For example, prove or dispove that a fyure defined by four given points in the coordinate plane is a 	No	\square	∇	\square							
Mathemaics	Hs	Expressing Geometric Properties wit Equations	Use coordinates to prove simple geometric theorems algebraically.	G.GPE. 5	Prove the slope criteria for parallel and perpendicular lines and use them to solve of a line parallel or perpendicular to a given line that passes through a given point).	No	\square	∇	\square							
Mathematics	Hs	Expressing Geometric Equations Equations	Use coordinates to prove simple geometric theorems algebraically.	G.GPE. 6	Find the point on a directed line segment between two given points that partitions the segment in a given ratio.	No	\square									
Mathematics	Hs	Expressing Geometric Properties with Equations	Use coordinates to prove simple geometric theorems algebraically.	G.GPE. 7	Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. \star	No	\square	∇	\square							
Mathemaics	Hs	Measureme Dimension	Explain volume formulas and use them to solve problems.	G.GMD. 1	Give an informal argument for the formulas for the circumference of a circle, area of a principle, and informal limit arguments. ylinder, pyramid, and cone. Use dissection arguments, Cavalieri's	No	\square									
Mathemaics	Hs	Geometric Measurement and Dimension	Explain volume formulas and use them to solve problems.	G.GMD. 2	${ }^{(+)}$Give an informal argument using Cavalieri's principle for the formulas for the volume of a sphere and other solid figures.	No	\square									
Mathematics	Hs	Geometric Measurement and Dimension	Explain volume formulas and use them to solve problems.	G.GMD. 3	Use volume formulas for cylinders, prramids, cones, and spheres to solve problems. .	No	\square	∇	∇	\square						
Mathematics	Hs	Geometric Measurement and Dimension	Visualize relationships between two-dimensional and three-dimensional objects.	G.GMD. 4	Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.	No	\square									
Mathematics	Hs	Modeding with Geometry	Apply geometic concepts in modeling situations.	G.Mg. 1	Use geometric shapes, their measures, and their properties to describe objects (e.g. modeling a tree trunk or a human torso as a cylinder). \star	No	\square	\bullet	\checkmark	\square						
Mathemaics	HS	Modeling with Geometry	Apply geometric concepts in modeling situations.	G.MG. 2	Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). \star	No	\square									
Mathemaics	Hs	Modeling with Geometry	Apply geometric concepts in modeling situations.	G.Mg. 3	Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). \star	No	\square	∇	\square							
Modeling is best interpreted not as a collection of isolated topics but in relation to other standards. Making mathematical models is a Standard for Mathematical Practice, and specific modeling standards appear throughout the high school standards indicated by a star symbol (\star). The star symbol sometimes appears on the heading for a group of standards; in that case, it should be understood to apply to all standards in that group.																
${ }^{(}+$) The high school standards specify the mathematics that all students should study in order to be college and career ready. Additional mathematics that students should learn in order to take advanced courses such as calculus, advanced statistics, or discrete mathematics is indicated by (+). All standards without a (+) symbol should be in the common mathematics curriculum for all college and career ready students. Standards without a (+) symbol may also appear in courses intended for all students.																

Subject	Grade	Domain	Cluster Statement	Standard Code	Common Core Standard	Priority Standard	Algebral	Geometry	Geometry Honors	A2	${ }^{\text {A2 }}$	A2TH	TRT	PC	PCA	PC
Mathemaics	Hs	Interpreting Categorical and Quantitative Data	Summarize, represent, and interpret data on a single count or measurement variable	S.ID. 1 (PR)	Represent data with plots on the real number line (dot plots, histograms, and box plots).	Priority	\bullet	\square								
Mathemaics	Hs	Interpreting Categorical and Quantitative Dat	Summarize, represent, and interpet data on a single count or measurement varable.	S.ID. 2 (PR)	Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.	Prioity	∇	\square								
Mathemaics	Hs	Interpreting Categorical and Quantitative Data	Summarize, represent, and interpret data on a single count or measurement variable	S.ID.3 (PR)	Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers)	Priority	∇	\square								
Mathematics	HS	Interpreting Categorical and Quantitative Data	Summarize, represent, and interpret data on a single count or measurement variable.	s.1D. 4	Use the mean and standard deviaition of a data set to fit t to a normal distribution and to estimate population percentages. Recognize that there calculuatrs, spreadsheets, and tables to estimate areas under the normal curve. curve.	No	\square									
Mathematics	Hs	Interpreting Categorical and Quantitative Data	Summarize, represent, and interpret data on two categorical and quantitative variables.	s.1D. 5	Summarize categorical data for two categories in two-way frequency ables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data	No	\square									
Mathemaics	нs	Interperting Categorical and ouantitative Data	Summarize, represent, and interpret data on two categorical and quantitative variables.	S.ID.6 (PR)	Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.	Prioity	\checkmark	\square								
Mathemaics	Hs	Interpreting Categorical and Quantitative Data	Summarize, represent, and interpret data on two categorical and quantitative variables.	S.ID. ${ }^{\text {a }}$ (PR)	Fit a function to the data; use functions fitted to data to solve problems in he context of the data. Use given functions or choose a function suggested by the context. Emphasize linear and exponential models	Priority	\square									
Mathematics	нs	Interpeting Categorical	Summarize, represent, and interpret data on two categorical and quantitative variables	S.ID. 6 b.	Informally assess the fit of a tunction by plotting and analyzing residuals.	No	\square									
Mathematics	HS	Interpreting Categorical and Quantitative Data	Summarize, represent, and interpret data on two categorical and quantitative variables.	S.ID. 6 c.	Fita linear function for a scater plot that suggests a linear association.	No	\square	\square	\square	\square	\square	\bullet	\square	\square	\square	\square
Mathematics	HS	Interpreting Categorical and Quantitative Data	Interpet linear models.	S.ID.7 (PR)	Interpret the slope (rate of change) and the intercept (constant term) of a inear model in the context of the data.	Priority	\square									
Mathemaics	Hs	Interpreting Categorical and Quantitative Data	Interpet inear models.	s.10. 8	Compute (using technology) and interpret the correlation coefficient of a linear fit.	No	\square									
Mathemaics	HS	Interpeting Categorical and auantitivive Oata	Interpret linear models.	S.ID.9 (PR)	Distinguish between correlation and causation.	Priority	\square									
Mathematics	HS	Making Inferences and Justifying Conclusions	Understand and evaluate random processes underlying statistical experiments.	S.IC.1 (PR)	Understand statistics as a process for making inferences about population parameters based on a random sample from that population.	Priority	\square	\square	\square	\checkmark	\bullet	\checkmark	\square	\square	\square	\square
Mathematics	HS	Making Inferences and Justifying Conclusions	Understand and evaluate random processes underlying statistical experiments.	s.lc. 2	Decide if a specified model is consistent with results from a given datagenerating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5 . Would a result of 5 tails in a row cause you to question the model?	No	\square									
Mathematics	нs	Making Inferences and Justifying Conclusions	Make inferences and justify conclusions from sample surveys, experiments, and observationa studies	s.IC. 3 (PR)	Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.	Priority	\square	\square	\square	\square	∇	∇	\square	\square	\square	\square
Mathemaics	HS	Making Inferences and Justifying Conclusions	Make inferences and justify conclusions from sample surveys, experiments, and observationa studies.	s.1. 4	Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.	No	\square									
Mathemaics	HS	Making Inferences and Justifying Conclusions	Make inferences and justify conclusions from sample surveys, experiments, and observationa studies.	s.c. 5	Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.	No	\square									
Mathematics	Hs	Making Inferences and Justifying Conclusions	Make inferences and justify conclusions from sample surveys, experiments, and observationa studies.	s.1. 6	Evaluate reports based on data.	No	\square									
Mathematics	HS	Conditional Probability and the Rules of Probability	Understand independence and conditional probability and use them to interpret data.	s.cP. 1	Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").	No	\square									
Mathematics	HS	Conditional Probability and the Rules of Probability	Understand independence and conditional probability and use them to interpret data	S.CP.2	Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilies, and use this characterization to determine if they are independent.	No	\square									
Mathematics	Hs	Conditional Probability and the Rules of Probability	Understand independence and conditional probability and use them to interpret data	s.CP. 3	Understand the conditional probability of A given B as $\mathrm{P}(\mathrm{A}$ and B$) / \mathrm{P}(\mathrm{B})$, and interpet indenendence of A and B as saying that the conditional and interperet independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the probability of A Aiven B is the same as the probability Af A , and the conditional probability of B given A is the same as the probability of B	No	\square									
Mathematics	Hs	Conditional Probability and the Rules of Probability	Understand independence and conditional probability and use them to interpret data.	S.CP. 4	Construct and interperet two-way frequency tables of data when two cateogories are associated with each object being classified Use the two- way tabe as a sample space to do decide fe fevent sare independent and to approximate conditional probabilities. For example, collect datat from a random sample of students in your school on their fruvorite subject ana math, science, and Engish. Estimate the probability that a randomly selected student foom your school will fuvor science given that the studen is in tenth grade. Do the same for other subjects and compare the results.	No	\square									
Mathemaics	Hs	Conditional Probability and the Rules of Probability	Understand independence and conditional probability and use them to interpret data.	s.cP. 5	Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.	No	\square									
Mathemaics	Hs	Conditional Probability and the Rules of Probability	Use the rules of probability to compute probabilities of compound events in a uniform probability model.	s.cP. 6	Find the conditional probability of A given B as the fraction of B 's outcomes that also belong to A , and interpret the answer in terms of the model.	No	\square									
Mathematics	Hs	Conditional Probability and the Rules of Probability	Use the rules of probability to compute probabilities of compound events in a uniform probability model.	s.cP. 7	Apply the Addition Rule, $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$, and interpret the answer in terms of the model	No	\square									
Mathemaics	HS	Conditional Probability and the Rules of Probability	Use the rules of probability to compute probabilities of compound events in a uniform probability model.	s.cp. 8	(+) Apply the general Multiplication Rule in a uniform probability model, $P(A$ and $B)=P(A) P(B \mid A)=P(B) P(A \mid B)$, and interpret the answer in terms of the and $B)=P(A) P(B \mid A)=P(B) P(A \mid B)$, and interpret the answer in terms of the model.	No	\square									
Mathemaics	HS	Conditional Probability and the Rules of Probability	Use the rules of probability to compute probabilities of compound events in a uniform probability model.	s.cP.9	${ }^{(+)}$Use permutations and combinations to compute probabilities of compound events and solve problems.	No	\square									
Mathematics	HS	Using Probability to Make Decisions	Calculate expected values and use them to solve problems.	S.MD. 1	${ }^{(+)}$Define a random variable for a quantity of interest by assigning a numerical value to each event in a sample space; graph the corresponding probability distribution using the same graphical displays as for data distributions.	No	\square									
Mathemaics	нs	Using Probability to Make Decisions	Calculate expected values and use them to solve problems.	S.MD. 2	(+) Calculate the expected value of a random variable; interpret it as the mean of the probability distribution.	No	\square									
Mathematics	HS	Using Probability to Make Decisions	Calculate expected values and use them to solve problems.	S.MD. 3	(+) Develop a probability distribution for a random variable defined for a sample space in whily theoretical probabilities can be calculated find the expected value. For example, find the theoretical probability distribution for of aumbero of correct answers obtained by guessing on all five questions expected grachoie test where each question harious grading schemes. four choices, and find the	No	\square									

Subject	Grade	Domain	Cluster Statement	Standard Code	Common Core Standard	Priority Standard	Algebral	Geometry	Geometry Honors	A2	${ }^{\text {a } 2 T}$	A2TH	TRT	PC	PCA	PCH
Mathemaics	Hs	Using Probability to Make Decisions	Calculate expected values and use them to solve problems.	S.MD. 4	(+) Develop a probability distribution for a random variable defined for a expected value. For exampole, find a currentit tata a distributuino on the number of T sets per housenold in the United States, and calculate the expected number of sets per household. How many TV sets woul you expeet to find in 100 randomly selected h households?	No	\square									
Mathematics	Hs	Using Probability to Make Decisions	Use probability to evaluate outcomes of decisions.	S.MD. 5	(+) Weigh the possible outcomes of a decision by assigning probabilities to payoff values and finding expected values.	No	\square									
Mathematics	Hs	Using Probability to Make Decisions	Use probability to evaluate outcomes of decisions.	S.MD. 5 a.	Find the expected payoff for a game of chance. For example, find the xpected winnings from a state lottery ticket or a game at a fast food restaurant	No	\square									
Mathematics	HS	Using Probability to Make Decisions	Use probability to evaluate outcomes of decisions.	S.MD.5b.	Evaluate and compare strategies on the basis of expected values. For example, compare a high-deductible versus a low-deductible automobile insurance policy using various, but reasonable, chances of having a mino or a major accident	No	\square									
Mathematics	HS	Using Probability to Make Decisions	Use probability to evaluate outcomes of decisions.	S.MD. 6	(+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator),	No	\square									
Mathematics	HS	Using Probability to Make Decisions	Use probability to evaluate outcomes of decisions.	S.MD. 7	(+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of game).	No	\square									

Subject	Grade	Domain	Cluster Statement	Standard Code	Common Core Standard	Intro to Computer Science	AP Computer Science Principles	AP Computer Science A
Computer Science	9-10	Computing Systems	Devices	9-10.CS. 01	Explain how abstractions hide the underlying implementation details of computing systems embedded in everyday objects	\checkmark	∇	\checkmark
Computer Science	9-10	Computing Systems	Hardwarde and Software	9-10.Cs.02	Compare levels of abstraction and interactions between application software, system software, and hardware layers.	∇	\square	\square
Computer Science	9-10	Computing Systems	Troubleshooting	9-10.CS. 03	Develop guidelines that convey systematic troubleshooting strategies that others can use to identify and fix errors.	\checkmark	\checkmark	\checkmark
Computer Science	9-10	Networks and the Internet	Network Communication and Organization	9-10.N1.04	Evaluate the scalability and reliability of networks by describing the relationship between routers, switches, servers, topology, and addressing. attacks. 9-10.NI.06 Compare various security measures, considering tradeoffs between the usability and security of a computing system.	\square	∇	\square
Computer Science	9-10	Networks and the Internet	Network Communication and Organization	9-10.NI. 05	Give examples to illustrate how sensitive data can be affected by malware and other attacks.	∇	\checkmark	\square
Computer Science	9-10	Networks and the Internet	Network Communication and Organization	9-10.N1. 06	Compare various security measures, considering tradeoffs between the usability and security of a computing system.	\checkmark	\checkmark	\square
Computer Science	9-10	Networks and the Internet	Cybersecurity	9-10.N1.07	Recommend security measures to address various scenarios based on factors such as efficiency, feasibility, and ethical impacts.	\square	\square	∇
Computer Science	9-10	Networks and the Internet	Cybersecurity	9-10.N. 08	Explain tradeoffs when selecting and implementing cybersecurity recommendations.	∇	\square	\square
Computer Science	9-10	Data and Analysis	Storage	9-10.DA. 09	Translate between different bit representations of real-world phenomena, such as characters, numbers, and images.	\checkmark	\checkmark	\checkmark
Computer Science	9-10	Data and Analysis	Storage	9-10.DA. 10	Evaluate the tradeoffs in how data elements are organized and stored. Collection, Visualization, and Transformation	∇	\checkmark	\checkmark
Computer Science	9-10	Data and Analysis	Collection, Visualization, and Transformation	9-10.DA. 11	Create interactive data visualizations using software tools to help others better understand realworld phenomena.	∇	\square	\square
Computer Science	9-10	Data and Analysis	Interference and Models	9-10.DA. 12	Create computational models that represent the relationships among different elements of data collected from a phenomenon or process.	\square	∇	∇
Computer Science	9-10	Algorithms and Programming	Algorithms	9-10.AP. 13	Create prototypes that use algorithms to solve computational problems by leveraging prior student knowledge and personal interests.	∇	∇	∇
Computer Science	9-10	Algorithms and Programming	Variables	9-10.AP. 14	Use lists to simplify solutions, generalizing computational problems instead of repeatedly using simple variables.	\square	∇	∇
Computer Science	9-10	Algorithms and Programming	Control	9-10.AP. 15	Justify the selection of specific control structures when tradeoffs involve implementation, readability, and program performance, and explain the benefits and drawbacks of choices made.	∇	∇	∇
Computer Science	9-10	Algorithms and Programming	Control	9-10.AP. 16	Design and iteratively develop computational artifacts for practical intent, personal expression, or to address a societal issue by using events to initiate instructions.	∇	∇	∇
Computer Science	9-10	Algorithms and Programming	Control	9-10.AP. 17	Decompose problems into smaller components through systematic analysis, using constructs such as procedures, modules, or objects.	∇	∇	∇
Computer Science	9-10	Algorithms and Programming	Modularity	9-10.AP. 18	Create artifacts by using procedures within a program, combinations of data and procedures, or independent but interrelated programs.	∇	∇	\checkmark
Computer Science	9-10	Algorithms and Programming	Modularity	9-10.AP. 19	Systematically design and develop programs for broad audiences by incorporating feedback from users.	∇	∇	∇
Computer Science	9-10	Algorithms and Programming	Program Development	9-10.AP. 20	Evaluate licenses that limit or restrict use of computational artifacts when using resources such as libraries.	\square	∇	∇
Computer Science	9-10	Algorithms and Programming	Program Development	9-10.AP. 21	Evaluate and refine computational artifacts to make them more usable and accessible.	∇	∇	∇
Computer Science	9-10	Algorithms and Programming	Program Development	9-10.AP. 22	Design and develop computational artifacts working in team roles using collaborative tools.	∇	∇	∇
Computer Science	9-10	Algorithms and Programming	Program Development	9-10.AP. 23	Document design decisions using text, graphics, presentations, or demonstrations in the development of complex programs.	\checkmark	\checkmark	∇
Computer Science	9-10	Algorithms and Programming	Program Development	9-10.AP. 24	Describe the characteristics and evaluate the impact of human computer interaction.	∇	\square	\square
Computer Science	9-10	Impacts of Computing	Culture	9-10.IC. 25	Evaluate the ways computing impacts personal, ethical, social, economic, and cultural practices. Evaluate the ways digital social interactions impact personal, ethical, social, economic, and cultural practices.	∇	∇	∇
Computer Science	9-10	Impacts of Computing	Culture	9-10.IC. 26	Test and refine computational artifacts to reduce bias and equity deficits.	\square	\checkmark	\checkmark
Computer Science	9-10	Impacts of Computing	Culture	9-10.IC. 27	Demonstrate ways a given algorithm applies to problems across disciplines.	\square	v	∇
Computer Science	9-10	Impacts of Computing	Social Interactions	9-10.IC. 28	Use tools and methods for collaboration on a project to increase connectivity of people in different cultures and career fields.	\square	\square	\checkmark
Computer Science	9-10	Impacts of Computing	Safety Law and Ethics	9-10.IC. 29	Explain the beneficial and harmful effects that intellectual property laws can have on innovation.	\square	∇	\square
Computer Science	9-10	Impacts of Computing	Safety Law and Ethics	9-10.IC. 30	Explain the privacy concerns related to the collection and generation of data through automated processes that may not be evident to users.	\checkmark	\square	\checkmark
Computer Science	9-10	Impacts of Computing	Safety Law and Ethics	9-10.IC. 31	Evaluate the social and economic implications of privacy in the context of safety, law, or ethics.	\checkmark	\checkmark	\checkmark
Computer Science	9-10	Emerging and Future Technologies	Emerging and Future Technologies	9-10.ET.A	Explain that the field of emerging technologies will be evolving and rapidly growing.	\square	∇	\square
Computer Science	9-10	Emerging and Future Technologies	Emerging and Future Technologies	9-10.ET.B	Compare existing and emerging technologies, ideas, and concepts.	\square	\checkmark	\square
Computer Science	9-10	Emerging and Future Technologies	Emerging and Future Technologies	9-10.ET.C	Describe how emerging technologies are influencing current events at a local and global scale.	\square	\checkmark	∇
Computer Science	9-10	Emerging and Future Technologies	Emerging and Future Technologies	9-10.ET.D	Predict the positive and negative societal, cultural, and economic impacts that emerging and future technologies may generate.	\square	\square	∇
Computer Science	9-10	Emerging and Future Technologies	Emerging and Future Technologies	9-10.ET.E	Create new or original work by applying emerging technologies.	\checkmark	\checkmark	\checkmark
Computer Science	11-12	Computing Systems	Devices	11-12.CS. 01	Compare the characteristics and uses of traditional and emerging computing devices and systems.	v	∇	∇

Subject	Grade	Domain	Cluster Statement	Standard Code	Common Core Standard	Intro to Computer Science	AP Computer Science Principles	AP Computer Science A
Computer Science	11-12	Computing Systems	Hardware and Software	11-12.Cs. 02	Categorize the roles of operating system software.	∇	\square	\square
Computer Science	11-12	Computing Systems	Troubleshooting	11-12.CS. 03	Illustrate ways computing systems implement logic, input, and output through hardware components.	\checkmark	\square	\square
Computer Science	11-12	Networks and the Internet	Network Communication and Organization	11-12.NI. 04	Describe the issues that impact network functionality (e.g., bandwidth, load, delay, topology).	\square	\checkmark	\square
Computer Science	11-12	Networks and the Internet	Cybersecurity	11-12.NI. 05	Compare ways software developers protect devices and information from unauthorized access.	\checkmark	\square	\square
Computer Science	11-12	Data and Analysis	Collection, Visualization, and Transformation	11-12.DA. 06	Use data analysis tools and techniques to identify patterns in data representing complex systems.	\checkmark	\checkmark	\checkmark
Computer Science	11-12	Data and Analysis	Collection, Visualization, and Transformation	11-12.DA. 07	Select data collection tools and techniques to generate data sets that support a claim or communicate information.	∇	∇	∇
Computer Science	11-12	Data and Analysis	Collection, Visualization, and Transformation	11-12.DA. 08	Analyze the ways in which automated data collection is utilized in society.	∇	∇	∇
Computer Science	11-12	Data and Analysis	Interference and Models	11-12.DA. 09	Evaluate the ability of models and simulations to test and support the refinement of hypotheses.	∇	∇	∇
Computer Science	11-12	Algorithms and Programming	Algorithms	11-12.AP. 10	Describe how artificial intelligence drives many software and physical systems.	\square	\square	\checkmark
Computer Science	11-12	Algorithms and Programming	Algorithms	11-12.AP. 11	Implement an artificial intelligence algorithm to play a game against a human opponent or solve a problem.	\square	\square	∇
Computer Science	11-12	Algorithms and Programming	Algorithms	11-12.AP.12	Use and adapt classic algorithms to solve computational problems.	\square	∇	∇
Computer Science	11-12	Algorithms and Programming	Algorithms	11-12.AP. 13	Evaluate algorithms in terms of their efficiency, correctness, and clarity.	\square	\square	∇
Computer Science	11-12	Algorithms and Programming	Variables	11-12.AP. 14	Compare and contrast fundamental data structures and their uses.	\square	\square	∇
Computer Science	11-12	Algorithms and Programming	Control	11-12.AP.15	Illustrate the flow of execution of a recursive algorithm.	\square	\square	∇
Computer Science	11-12	Algorithms and Programming	Modularity	11-12.AP. 16	Construct solutions to problems using student-created components, such as procedures, modules, or objects.	\checkmark	\checkmark	∇
Computer Science	11-12	Algorithms and Programming	Modularity	11-12.AP. 17	Analyze a large-scale computational problem and identify generalizable patterns that can be applied to a solution.	\square	\checkmark	∇
Computer Science	11-12	Algorithms and Programming	Modularity	11-12.AP. 18	Demonstrate code reuse by creating programming solutions using libraries and application programming interfaces.	\square	∇	∇
Computer Science	11-12	Algorithms and Programming	Program Development	11-12.AP. 19	Plan and develop programs for broad audiences using a software life cycle process.	\checkmark	∇	∇
Computer Science	11-12	Algorithms and Programming	Program Development	11-12.AP. 20	Demonstrate conversion of source code into machine code using compliers or interpreters.	\square	∇	∇
Computer Science	11-12	Algorithms and Programming	Program Development	11-12.AP. 21	Explain security issues that might lead to compromised computer programs.	\checkmark	\square	\square
Computer Science	11-12	Algorithms and Programming	Program Development	11-12.AP. 22	Develop programs for multiple computing platforms.	∇	\square	∇
Computer Science	11-12	Algorithms and Programming	Program Development	11-12.AP. 23	Use version control systems, integrated development environments, and collaborative tools and practices (code documentation) in a group software project.	\square	\checkmark	\checkmark
Computer Science	11-12	Algorithms and Programming	Program Development	11-12.AP. 24	Develop and use a series of test cases to verify that a program performs according to its design specifications.	\square	\square	∇
Computer Science	11-12	Algorithms and Programming	Program Development	11-12.AP. 25	Discuss social, economic, and ethical consequences of malfunctional software and software updates.	\checkmark	\square	\square
Computer Science	11-12	Algorithms and Programming	Program Development	11-12.AP. 26	Modify an existing program to add additional functionality and discuss intended and unintended implications (e.g., breaking other functionality).	\square	\checkmark	\checkmark
Computer Science	11-12	Algorithms and Programming	Program Development	11-12.AP. 27	Evaluate key qualities of a program through a process such as a code review.	∇	∇	∇
Computer Science	11-12	Algorithms and Programming	Program Development	11-12.AP. 28	Compare multiple programming languages and discuss how their features make them suitable for solving different types of problems.	∇	\square	\square
Computer Science	11-12	Impacts of Computing	Culture	11-12.IC. 29	Evaluate computational artifacts to maximize their beneficial effects and minimize harmful effects on society.	\square	\checkmark	\square
Computer Science	11-12	Impacts of Computing	Culture	11-12.IC. 30	Evaluate the impact of equity, access, and influence on the distribution of computing resources in a global society.	\square	\checkmark	\square
Computer Science	11-12	Impacts of Computing	Culture	11-12.IC. 31	Predict how computational innovations that have revolutionized aspects of our culture might evolve.	\checkmark	v	∇
Computer Science	11-12	Impacts of Computing	Safety Law and Ethics	11-12.IC.32	Debate laws and regulations that impact the development and use of software.	\square	∇	\square
Computer Science	11-12	Emerging and Future Technologies	Emerging and Future Technologies	11-12.ET.A	Explain that the field of emerging technologies will be evolving and rapidly growing.	∇	∇	\checkmark
Computer Science	11-12	Emerging and Future Technologies	Emerging and Future Technologies	11-12.ET.B	Compare existing and emerging technologies, ideas, and concepts.	\checkmark	\square	\checkmark
Computer Science	11-12	Emerging and Future Technologies	Emerging and Future Technologies	11-12.ET.C	Describe how emerging technologies are influencing current events at a local and global scale.	\checkmark	\square	\square
Computer Science	11-12	Emerging and Future Technologies	Emerging and Future Technologies	11-12.ET.D	Predict the positive and negative societal, cultural, and economic impacts that emerging and future technologies may generate.	\square	\checkmark	\square
Computer Science	11-12	Emerging and Future Technologies	Emerging and Future Technologies	11-12.ET.E	Create new or original work by applying emerging technologies.	\checkmark	\checkmark	∇

